coqui-tts/TTS/bin/compute_embeddings.py

76 lines
2.5 KiB
Python

import argparse
import os
from argparse import RawTextHelpFormatter
from tqdm import tqdm
from TTS.config import load_config
from TTS.tts.datasets import load_meta_data
from TTS.tts.utils.speakers import SpeakerManager
parser = argparse.ArgumentParser(
description="""Compute embedding vectors for each wav file in a dataset.\n\n"""
"""
Example runs:
python TTS/bin/compute_embeddings.py speaker_encoder_model.pth.tar speaker_encoder_config.json dataset_config.json embeddings_output_path/
""",
formatter_class=RawTextHelpFormatter,
)
parser.add_argument("model_path", type=str, help="Path to model checkpoint file.")
parser.add_argument(
"config_path",
type=str,
help="Path to model config file.",
)
parser.add_argument(
"config_dataset_path",
type=str,
help="Path to dataset config file.",
)
parser.add_argument("output_path", type=str, help="path for output speakers.json and/or speakers.npy.")
parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True)
parser.add_argument("--eval", type=bool, help="compute eval.", default=True)
args = parser.parse_args()
c_dataset = load_config(args.config_dataset_path)
meta_data_train, meta_data_eval = load_meta_data(c_dataset.datasets, eval_split=args.eval)
wav_files = meta_data_train + meta_data_eval
speaker_manager = SpeakerManager(
encoder_model_path=args.model_path, encoder_config_path=args.config_path, use_cuda=args.use_cuda
)
# compute speaker embeddings
speaker_mapping = {}
for idx, wav_file in enumerate(tqdm(wav_files)):
if isinstance(wav_file, list):
speaker_name = wav_file[2]
wav_file = wav_file[1]
else:
speaker_name = None
# extract the embedding
embedd = speaker_manager.compute_d_vector_from_clip(wav_file)
# create speaker_mapping if target dataset is defined
wav_file_name = os.path.basename(wav_file)
speaker_mapping[wav_file_name] = {}
speaker_mapping[wav_file_name]["name"] = speaker_name
speaker_mapping[wav_file_name]["embedding"] = embedd
if speaker_mapping:
# save speaker_mapping if target dataset is defined
if ".json" not in args.output_path:
mapping_file_path = os.path.join(args.output_path, "speakers.json")
else:
mapping_file_path = args.output_path
os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True)
# pylint: disable=W0212
speaker_manager._save_json(mapping_file_path, speaker_mapping)
print("Speaker embeddings saved at:", mapping_file_path)