mirror of https://github.com/coqui-ai/TTS.git
213 lines
6.8 KiB
Python
213 lines
6.8 KiB
Python
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
|
|
from TTS.utils.io import load_fsspec
|
|
|
|
|
|
class SELayer(nn.Module):
|
|
def __init__(self, channel, reduction=8):
|
|
super(SELayer, self).__init__()
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
|
self.fc = nn.Sequential(
|
|
nn.Linear(channel, channel // reduction),
|
|
nn.ReLU(inplace=True),
|
|
nn.Linear(channel // reduction, channel),
|
|
nn.Sigmoid(),
|
|
)
|
|
|
|
def forward(self, x):
|
|
b, c, _, _ = x.size()
|
|
y = self.avg_pool(x).view(b, c)
|
|
y = self.fc(y).view(b, c, 1, 1)
|
|
return x * y
|
|
|
|
|
|
class SEBasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=8):
|
|
super(SEBasicBlock, self).__init__()
|
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.se = SELayer(planes, reduction)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.relu(out)
|
|
out = self.bn1(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.se(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
return out
|
|
|
|
|
|
class ResNetSpeakerEncoder(nn.Module):
|
|
"""Implementation of the model H/ASP without batch normalization in speaker embedding. This model was proposed in: https://arxiv.org/abs/2009.14153
|
|
Adapted from: https://github.com/clovaai/voxceleb_trainer
|
|
"""
|
|
|
|
# pylint: disable=W0102
|
|
def __init__(
|
|
self,
|
|
input_dim=64,
|
|
proj_dim=512,
|
|
layers=[3, 4, 6, 3],
|
|
num_filters=[32, 64, 128, 256],
|
|
encoder_type="ASP",
|
|
log_input=False,
|
|
):
|
|
super(ResNetSpeakerEncoder, self).__init__()
|
|
|
|
self.encoder_type = encoder_type
|
|
self.input_dim = input_dim
|
|
self.log_input = log_input
|
|
self.conv1 = nn.Conv2d(1, num_filters[0], kernel_size=3, stride=1, padding=1)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.bn1 = nn.BatchNorm2d(num_filters[0])
|
|
|
|
self.inplanes = num_filters[0]
|
|
self.layer1 = self.create_layer(SEBasicBlock, num_filters[0], layers[0])
|
|
self.layer2 = self.create_layer(SEBasicBlock, num_filters[1], layers[1], stride=(2, 2))
|
|
self.layer3 = self.create_layer(SEBasicBlock, num_filters[2], layers[2], stride=(2, 2))
|
|
self.layer4 = self.create_layer(SEBasicBlock, num_filters[3], layers[3], stride=(2, 2))
|
|
|
|
self.instancenorm = nn.InstanceNorm1d(input_dim)
|
|
|
|
outmap_size = int(self.input_dim / 8)
|
|
|
|
self.attention = nn.Sequential(
|
|
nn.Conv1d(num_filters[3] * outmap_size, 128, kernel_size=1),
|
|
nn.ReLU(),
|
|
nn.BatchNorm1d(128),
|
|
nn.Conv1d(128, num_filters[3] * outmap_size, kernel_size=1),
|
|
nn.Softmax(dim=2),
|
|
)
|
|
|
|
if self.encoder_type == "SAP":
|
|
out_dim = num_filters[3] * outmap_size
|
|
elif self.encoder_type == "ASP":
|
|
out_dim = num_filters[3] * outmap_size * 2
|
|
else:
|
|
raise ValueError("Undefined encoder")
|
|
|
|
self.fc = nn.Linear(out_dim, proj_dim)
|
|
|
|
self._init_layers()
|
|
|
|
def _init_layers(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def create_layer(self, block, planes, blocks, stride=1):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(planes * block.expansion),
|
|
)
|
|
|
|
layers = []
|
|
layers.append(block(self.inplanes, planes, stride, downsample))
|
|
self.inplanes = planes * block.expansion
|
|
for _ in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
# pylint: disable=R0201
|
|
def new_parameter(self, *size):
|
|
out = nn.Parameter(torch.FloatTensor(*size))
|
|
nn.init.xavier_normal_(out)
|
|
return out
|
|
|
|
def forward(self, x, l2_norm=False):
|
|
x = x.transpose(1, 2)
|
|
with torch.no_grad():
|
|
with torch.cuda.amp.autocast(enabled=False):
|
|
if self.log_input:
|
|
x = (x + 1e-6).log()
|
|
x = self.instancenorm(x).unsqueeze(1)
|
|
|
|
x = self.conv1(x)
|
|
x = self.relu(x)
|
|
x = self.bn1(x)
|
|
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x = self.layer4(x)
|
|
|
|
x = x.reshape(x.size()[0], -1, x.size()[-1])
|
|
|
|
w = self.attention(x)
|
|
|
|
if self.encoder_type == "SAP":
|
|
x = torch.sum(x * w, dim=2)
|
|
elif self.encoder_type == "ASP":
|
|
mu = torch.sum(x * w, dim=2)
|
|
sg = torch.sqrt((torch.sum((x ** 2) * w, dim=2) - mu ** 2).clamp(min=1e-5))
|
|
x = torch.cat((mu, sg), 1)
|
|
|
|
x = x.view(x.size()[0], -1)
|
|
x = self.fc(x)
|
|
|
|
if l2_norm:
|
|
x = torch.nn.functional.normalize(x, p=2, dim=1)
|
|
return x
|
|
|
|
@torch.no_grad()
|
|
def compute_embedding(self, x, num_frames=250, num_eval=10, return_mean=True):
|
|
"""
|
|
Generate embeddings for a batch of utterances
|
|
x: 1xTxD
|
|
"""
|
|
max_len = x.shape[1]
|
|
|
|
if max_len < num_frames:
|
|
num_frames = max_len
|
|
|
|
offsets = np.linspace(0, max_len - num_frames, num=num_eval)
|
|
|
|
frames_batch = []
|
|
for offset in offsets:
|
|
offset = int(offset)
|
|
end_offset = int(offset + num_frames)
|
|
frames = x[:, offset:end_offset]
|
|
frames_batch.append(frames)
|
|
|
|
frames_batch = torch.cat(frames_batch, dim=0)
|
|
embeddings = self.forward(frames_batch, l2_norm=True)
|
|
|
|
if return_mean:
|
|
embeddings = torch.mean(embeddings, dim=0, keepdim=True)
|
|
|
|
return embeddings
|
|
|
|
def load_checkpoint(self, config: dict, checkpoint_path: str, eval: bool = False, use_cuda: bool = False):
|
|
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"))
|
|
self.load_state_dict(state["model"])
|
|
if use_cuda:
|
|
self.cuda()
|
|
if eval:
|
|
self.eval()
|
|
assert not self.training
|