mirror of https://github.com/coqui-ai/TTS.git
390 lines
14 KiB
Python
390 lines
14 KiB
Python
import os
|
|
import re
|
|
import xml.etree.ElementTree as ET
|
|
from glob import glob
|
|
from pathlib import Path
|
|
from typing import List
|
|
|
|
from tqdm import tqdm
|
|
|
|
########################
|
|
# DATASETS
|
|
########################
|
|
|
|
|
|
def tweb(root_path, meta_file):
|
|
"""Normalize TWEB dataset.
|
|
https://www.kaggle.com/bryanpark/the-world-english-bible-speech-dataset
|
|
"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "tweb"
|
|
with open(txt_file, "r", encoding="utf-8") as ttf:
|
|
for line in ttf:
|
|
cols = line.split("\t")
|
|
wav_file = os.path.join(root_path, cols[0] + ".wav")
|
|
text = cols[1]
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def mozilla(root_path, meta_file):
|
|
"""Normalizes Mozilla meta data files to TTS format"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "mozilla"
|
|
with open(txt_file, "r", encoding="utf-8") as ttf:
|
|
for line in ttf:
|
|
cols = line.split("|")
|
|
wav_file = cols[1].strip()
|
|
text = cols[0].strip()
|
|
wav_file = os.path.join(root_path, "wavs", wav_file)
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def mozilla_de(root_path, meta_file):
|
|
"""Normalizes Mozilla meta data files to TTS format"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "mozilla"
|
|
with open(txt_file, "r", encoding="ISO 8859-1") as ttf:
|
|
for line in ttf:
|
|
cols = line.strip().split("|")
|
|
wav_file = cols[0].strip()
|
|
text = cols[1].strip()
|
|
folder_name = f"BATCH_{wav_file.split('_')[0]}_FINAL"
|
|
wav_file = os.path.join(root_path, folder_name, wav_file)
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def mailabs(root_path, meta_files=None):
|
|
"""Normalizes M-AI-Labs meta data files to TTS format"""
|
|
speaker_regex = re.compile("by_book/(male|female)/(?P<speaker_name>[^/]+)/")
|
|
if meta_files is None:
|
|
csv_files = glob(root_path + "/**/metadata.csv", recursive=True)
|
|
else:
|
|
csv_files = meta_files
|
|
# meta_files = [f.strip() for f in meta_files.split(",")]
|
|
items = []
|
|
for csv_file in csv_files:
|
|
txt_file = os.path.join(root_path, csv_file)
|
|
folder = os.path.dirname(txt_file)
|
|
# determine speaker based on folder structure...
|
|
speaker_name_match = speaker_regex.search(txt_file)
|
|
if speaker_name_match is None:
|
|
continue
|
|
speaker_name = speaker_name_match.group("speaker_name")
|
|
print(" | > {}".format(csv_file))
|
|
with open(txt_file, "r", encoding="utf-8") as ttf:
|
|
for line in ttf:
|
|
cols = line.split("|")
|
|
if meta_files is None:
|
|
wav_file = os.path.join(folder, "wavs", cols[0] + ".wav")
|
|
else:
|
|
wav_file = os.path.join(root_path, folder.replace("metadata.csv", ""), "wavs", cols[0] + ".wav")
|
|
if os.path.isfile(wav_file):
|
|
text = cols[1].strip()
|
|
items.append([text, wav_file, speaker_name])
|
|
else:
|
|
raise RuntimeError("> File %s does not exist!" % (wav_file))
|
|
return items
|
|
|
|
|
|
def ljspeech(root_path, meta_file):
|
|
"""Normalizes the LJSpeech meta data file to TTS format
|
|
https://keithito.com/LJ-Speech-Dataset/"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "ljspeech"
|
|
with open(txt_file, "r", encoding="utf-8") as ttf:
|
|
for line in ttf:
|
|
cols = line.split("|")
|
|
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav")
|
|
text = cols[2]
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def ljspeech_test(root_path, meta_file):
|
|
"""Normalizes the LJSpeech meta data file for TTS testing
|
|
https://keithito.com/LJ-Speech-Dataset/"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
with open(txt_file, "r", encoding="utf-8") as ttf:
|
|
for idx, line in enumerate(ttf):
|
|
cols = line.split("|")
|
|
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav")
|
|
text = cols[2]
|
|
items.append([text, wav_file, f"ljspeech-{idx}"])
|
|
return items
|
|
|
|
|
|
def sam_accenture(root_path, meta_file):
|
|
"""Normalizes the sam-accenture meta data file to TTS format
|
|
https://github.com/Sam-Accenture-Non-Binary-Voice/non-binary-voice-files"""
|
|
xml_file = os.path.join(root_path, "voice_over_recordings", meta_file)
|
|
xml_root = ET.parse(xml_file).getroot()
|
|
items = []
|
|
speaker_name = "sam_accenture"
|
|
for item in xml_root.findall("./fileid"):
|
|
text = item.text
|
|
wav_file = os.path.join(root_path, "vo_voice_quality_transformation", item.get("id") + ".wav")
|
|
if not os.path.exists(wav_file):
|
|
print(f" [!] {wav_file} in metafile does not exist. Skipping...")
|
|
continue
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def ruslan(root_path, meta_file):
|
|
"""Normalizes the RUSLAN meta data file to TTS format
|
|
https://ruslan-corpus.github.io/"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "ljspeech"
|
|
with open(txt_file, "r", encoding="utf-8") as ttf:
|
|
for line in ttf:
|
|
cols = line.split("|")
|
|
wav_file = os.path.join(root_path, "RUSLAN", cols[0] + ".wav")
|
|
text = cols[1]
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def css10(root_path, meta_file):
|
|
"""Normalizes the CSS10 dataset file to TTS format"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "ljspeech"
|
|
with open(txt_file, "r", encoding="utf-8") as ttf:
|
|
for line in ttf:
|
|
cols = line.split("|")
|
|
wav_file = os.path.join(root_path, cols[0])
|
|
text = cols[1]
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def nancy(root_path, meta_file):
|
|
"""Normalizes the Nancy meta data file to TTS format"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "nancy"
|
|
with open(txt_file, "r", encoding="utf-8") as ttf:
|
|
for line in ttf:
|
|
utt_id = line.split()[1]
|
|
text = line[line.find('"') + 1 : line.rfind('"') - 1]
|
|
wav_file = os.path.join(root_path, "wavn", utt_id + ".wav")
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def common_voice(root_path, meta_file):
|
|
"""Normalize the common voice meta data file to TTS format."""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
with open(txt_file, "r", encoding="utf-8") as ttf:
|
|
for line in ttf:
|
|
if line.startswith("client_id"):
|
|
continue
|
|
cols = line.split("\t")
|
|
text = cols[2]
|
|
speaker_name = cols[0]
|
|
wav_file = os.path.join(root_path, "clips", cols[1].replace(".mp3", ".wav"))
|
|
items.append([text, wav_file, "MCV_" + speaker_name])
|
|
return items
|
|
|
|
|
|
def libri_tts(root_path, meta_files=None):
|
|
"""https://ai.google/tools/datasets/libri-tts/"""
|
|
items = []
|
|
if meta_files is None:
|
|
meta_files = glob(f"{root_path}/**/*trans.tsv", recursive=True)
|
|
else:
|
|
if isinstance(meta_files, str):
|
|
meta_files = [os.path.join(root_path, meta_files)]
|
|
|
|
for meta_file in meta_files:
|
|
_meta_file = os.path.basename(meta_file).split(".")[0]
|
|
with open(meta_file, "r", encoding="utf-8") as ttf:
|
|
for line in ttf:
|
|
cols = line.split("\t")
|
|
file_name = cols[0]
|
|
speaker_name, chapter_id, *_ = cols[0].split("_")
|
|
_root_path = os.path.join(root_path, f"{speaker_name}/{chapter_id}")
|
|
wav_file = os.path.join(_root_path, file_name + ".wav")
|
|
text = cols[2]
|
|
items.append([text, wav_file, "LTTS_" + speaker_name])
|
|
for item in items:
|
|
assert os.path.exists(item[1]), f" [!] wav files don't exist - {item[1]}"
|
|
return items
|
|
|
|
|
|
def custom_turkish(root_path, meta_file):
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "turkish-female"
|
|
skipped_files = []
|
|
with open(txt_file, "r", encoding="utf-8") as ttf:
|
|
for line in ttf:
|
|
cols = line.split("|")
|
|
wav_file = os.path.join(root_path, "wavs", cols[0].strip() + ".wav")
|
|
if not os.path.exists(wav_file):
|
|
skipped_files.append(wav_file)
|
|
continue
|
|
text = cols[1].strip()
|
|
items.append([text, wav_file, speaker_name])
|
|
print(f" [!] {len(skipped_files)} files skipped. They don't exist...")
|
|
return items
|
|
|
|
|
|
# ToDo: add the dataset link when the dataset is released publicly
|
|
def brspeech(root_path, meta_file):
|
|
"""BRSpeech 3.0 beta"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
with open(txt_file, "r", encoding="utf-8") as ttf:
|
|
for line in ttf:
|
|
if line.startswith("wav_filename"):
|
|
continue
|
|
cols = line.split("|")
|
|
wav_file = os.path.join(root_path, cols[0])
|
|
text = cols[2]
|
|
speaker_name = cols[3]
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def vctk(root_path, meta_files=None, wavs_path="wav48"):
|
|
"""homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz"""
|
|
test_speakers = meta_files
|
|
items = []
|
|
meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True)
|
|
for meta_file in meta_files:
|
|
_, speaker_id, txt_file = os.path.relpath(meta_file, root_path).split(os.sep)
|
|
file_id = txt_file.split(".")[0]
|
|
if isinstance(test_speakers, list): # if is list ignore this speakers ids
|
|
if speaker_id in test_speakers:
|
|
continue
|
|
with open(meta_file, "r", encoding="utf-8") as file_text:
|
|
text = file_text.readlines()[0]
|
|
wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + ".wav")
|
|
items.append([text, wav_file, "VCTK_" + speaker_id])
|
|
|
|
return items
|
|
|
|
|
|
def vctk_slim(root_path, meta_files=None, wavs_path="wav48"):
|
|
"""homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz"""
|
|
items = []
|
|
txt_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True)
|
|
for text_file in txt_files:
|
|
_, speaker_id, txt_file = os.path.relpath(text_file, root_path).split(os.sep)
|
|
file_id = txt_file.split(".")[0]
|
|
if isinstance(meta_files, list): # if is list ignore this speakers ids
|
|
if speaker_id in meta_files:
|
|
continue
|
|
wav_file = os.path.join(root_path, wavs_path, speaker_id, file_id + ".wav")
|
|
items.append([None, wav_file, "VCTK_" + speaker_id])
|
|
|
|
return items
|
|
|
|
|
|
def mls(root_path, meta_files=None):
|
|
"""http://www.openslr.org/94/"""
|
|
items = []
|
|
with open(os.path.join(root_path, meta_files), "r", encoding="utf-8") as meta:
|
|
for line in meta:
|
|
file, text = line.split("\t")
|
|
text = text[:-1]
|
|
speaker, book, *_ = file.split("_")
|
|
wav_file = os.path.join(root_path, os.path.dirname(meta_files), "audio", speaker, book, file + ".wav")
|
|
items.append([text, wav_file, "MLS_" + speaker])
|
|
return items
|
|
|
|
|
|
# ======================================== VOX CELEB ===========================================
|
|
def voxceleb2(root_path, meta_file=None):
|
|
"""
|
|
:param meta_file Used only for consistency with load_meta_data api
|
|
"""
|
|
return _voxcel_x(root_path, meta_file, voxcel_idx="2")
|
|
|
|
|
|
def voxceleb1(root_path, meta_file=None):
|
|
"""
|
|
:param meta_file Used only for consistency with load_meta_data api
|
|
"""
|
|
return _voxcel_x(root_path, meta_file, voxcel_idx="1")
|
|
|
|
|
|
def _voxcel_x(root_path, meta_file, voxcel_idx):
|
|
assert voxcel_idx in ["1", "2"]
|
|
expected_count = 148_000 if voxcel_idx == "1" else 1_000_000
|
|
voxceleb_path = Path(root_path)
|
|
cache_to = voxceleb_path / f"metafile_voxceleb{voxcel_idx}.csv"
|
|
cache_to.parent.mkdir(exist_ok=True)
|
|
|
|
# if not exists meta file, crawl recursively for 'wav' files
|
|
if meta_file is not None:
|
|
with open(str(meta_file), "r", encoding="utf-8") as f:
|
|
return [x.strip().split("|") for x in f.readlines()]
|
|
|
|
elif not cache_to.exists():
|
|
cnt = 0
|
|
meta_data = []
|
|
wav_files = voxceleb_path.rglob("**/*.wav")
|
|
for path in tqdm(
|
|
wav_files,
|
|
desc=f"Building VoxCeleb {voxcel_idx} Meta file ... this needs to be done only once.",
|
|
total=expected_count,
|
|
):
|
|
speaker_id = str(Path(path).parent.parent.stem)
|
|
assert speaker_id.startswith("id")
|
|
text = None # VoxCel does not provide transciptions, and they are not needed for training the SE
|
|
meta_data.append(f"{text}|{path}|voxcel{voxcel_idx}_{speaker_id}\n")
|
|
cnt += 1
|
|
with open(str(cache_to), "w", encoding="utf-8") as f:
|
|
f.write("".join(meta_data))
|
|
if cnt < expected_count:
|
|
raise ValueError(f"Found too few instances for Voxceleb. Should be around {expected_count}, is: {cnt}")
|
|
|
|
with open(str(cache_to), "r", encoding="utf-8") as f:
|
|
return [x.strip().split("|") for x in f.readlines()]
|
|
|
|
|
|
def baker(root_path: str, meta_file: str) -> List[List[str]]:
|
|
"""Normalizes the Baker meta data file to TTS format
|
|
|
|
Args:
|
|
root_path (str): path to the baker dataset
|
|
meta_file (str): name of the meta dataset containing names of wav to select and the transcript of the sentence
|
|
Returns:
|
|
List[List[str]]: List of (text, wav_path, speaker_name) associated with each sentences
|
|
"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "baker"
|
|
with open(txt_file, "r", encoding="utf-8") as ttf:
|
|
for line in ttf:
|
|
wav_name, text = line.rstrip("\n").split("|")
|
|
wav_path = os.path.join(root_path, "clips_22", wav_name)
|
|
items.append([text, wav_path, speaker_name])
|
|
return items
|
|
|
|
|
|
def kokoro(root_path, meta_file):
|
|
"""Japanese single-speaker dataset from https://github.com/kaiidams/Kokoro-Speech-Dataset"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "kokoro"
|
|
with open(txt_file, "r", encoding="utf-8") as ttf:
|
|
for line in ttf:
|
|
cols = line.split("|")
|
|
wav_file = os.path.join(root_path, "wavs", cols[0] + ".wav")
|
|
text = cols[2].replace(" ", "")
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|