coqui-tts/TTS/vocoder/utils/io.py

84 lines
3.0 KiB
Python

import os
import torch
import datetime
import pickle as pickle_tts
from TTS.utils.io import RenamingUnpickler
def load_checkpoint(model, checkpoint_path, use_cuda=False, eval=False):
try:
state = torch.load(checkpoint_path, map_location=torch.device('cpu'))
except ModuleNotFoundError:
pickle_tts.Unpickler = RenamingUnpickler
state = torch.load(checkpoint_path, map_location=torch.device('cpu'), pickle_module=pickle_tts)
model.load_state_dict(state['model'])
if use_cuda:
model.cuda()
if eval:
model.eval()
return model, state
def save_model(model, optimizer, scheduler, model_disc, optimizer_disc,
scheduler_disc, current_step, epoch, output_path, **kwargs):
if hasattr(model, 'module'):
model_state = model.module.state_dict()
else:
model_state = model.state_dict()
model_disc_state = model_disc.state_dict()\
if model_disc is not None else None
optimizer_state = optimizer.state_dict()\
if optimizer is not None else None
optimizer_disc_state = optimizer_disc.state_dict()\
if optimizer_disc is not None else None
scheduler_state = scheduler.state_dict()\
if scheduler is not None else None
scheduler_disc_state = scheduler_disc.state_dict()\
if scheduler_disc is not None else None
state = {
'model': model_state,
'optimizer': optimizer_state,
'scheduler': scheduler_state,
'model_disc': model_disc_state,
'optimizer_disc': optimizer_disc_state,
'scheduler_disc': scheduler_disc_state,
'step': current_step,
'epoch': epoch,
'date': datetime.date.today().strftime("%B %d, %Y"),
}
state.update(kwargs)
torch.save(state, output_path)
def save_checkpoint(model, optimizer, scheduler, model_disc, optimizer_disc,
scheduler_disc, current_step, epoch, output_folder,
**kwargs):
file_name = 'checkpoint_{}.pth.tar'.format(current_step)
checkpoint_path = os.path.join(output_folder, file_name)
print(" > CHECKPOINT : {}".format(checkpoint_path))
save_model(model, optimizer, scheduler, model_disc, optimizer_disc,
scheduler_disc, current_step, epoch, checkpoint_path, **kwargs)
def save_best_model(target_loss, best_loss, model, optimizer, scheduler,
model_disc, optimizer_disc, scheduler_disc, current_step,
epoch, output_folder, **kwargs):
if target_loss < best_loss:
file_name = 'best_model.pth.tar'
checkpoint_path = os.path.join(output_folder, file_name)
print(" > BEST MODEL : {}".format(checkpoint_path))
save_model(model,
optimizer,
scheduler,
model_disc,
optimizer_disc,
scheduler_disc,
current_step,
epoch,
checkpoint_path,
model_loss=target_loss,
**kwargs)
best_loss = target_loss
return best_loss