coqui-tts/TTS/encoder/dataset.py

250 lines
9.5 KiB
Python

import random
import numpy as np
import torch
from torch.utils.data import Dataset
from TTS.encoder.utils.generic_utils import AugmentWAV, Storage
class EncoderDataset(Dataset):
def __init__(
self,
ap,
meta_data,
voice_len=1.6,
num_classes_in_batch=64,
storage_size=1,
sample_from_storage_p=0.5,
num_utter_per_class=10,
skip_classes=False,
verbose=False,
augmentation_config=None,
use_torch_spec=None,
):
"""
Args:
ap (TTS.tts.utils.AudioProcessor): audio processor object.
meta_data (list): list of dataset instances.
seq_len (int): voice segment length in seconds.
verbose (bool): print diagnostic information.
"""
super().__init__()
self.items = meta_data
self.sample_rate = ap.sample_rate
self.seq_len = int(voice_len * self.sample_rate)
self.num_classes_in_batch = num_classes_in_batch
self.num_utter_per_class = num_utter_per_class
self.skip_classes = skip_classes
self.ap = ap
self.verbose = verbose
self.use_torch_spec = use_torch_spec
self.__parse_items()
storage_max_size = storage_size * num_classes_in_batch
self.storage = Storage(
maxsize=storage_max_size, storage_batchs=storage_size, num_classes_in_batch=num_classes_in_batch
)
self.sample_from_storage_p = float(sample_from_storage_p)
classes_aux = list(self.classes)
classes_aux.sort()
self.classname_to_classid = {key: i for i, key in enumerate(classes_aux)}
# Augmentation
self.augmentator = None
self.gaussian_augmentation_config = None
if augmentation_config:
self.data_augmentation_p = augmentation_config["p"]
if self.data_augmentation_p and ("additive" in augmentation_config or "rir" in augmentation_config):
self.augmentator = AugmentWAV(ap, augmentation_config)
if "gaussian" in augmentation_config.keys():
self.gaussian_augmentation_config = augmentation_config["gaussian"]
if self.verbose:
print("\n > DataLoader initialization")
print(f" | > Classes per Batch: {num_classes_in_batch}")
print(f" | > Storage Size: {storage_max_size} instances, each with {num_utter_per_class} utters")
print(f" | > Sample_from_storage_p : {self.sample_from_storage_p}")
print(f" | > Number of instances : {len(self.items)}")
print(f" | > Sequence length: {self.seq_len}")
print(f" | > Num Classes: {len(self.classes)}")
print(f" | > Classes: {list(self.classes)}")
def load_wav(self, filename):
audio = self.ap.load_wav(filename, sr=self.ap.sample_rate)
return audio
def __parse_items(self):
self.class_to_utters = {}
for i in self.items:
path_ = i["audio_file"]
speaker_ = i["speaker_name"]
if speaker_ in self.speaker_to_utters.keys():
self.speaker_to_utters[speaker_].append(path_)
else:
self.class_to_utters[class_name] = [
path_,
]
if self.skip_classes:
self.class_to_utters = {
k: v for (k, v) in self.class_to_utters.items() if len(v) >= self.num_utter_per_class
}
self.classes = [k for (k, v) in self.class_to_utters.items()]
def __len__(self):
return int(1e10)
def get_num_classes(self):
return len(self.classes)
def get_map_classid_to_classname(self):
return dict((c_id, c_n) for c_n, c_id in self.classname_to_classid.items())
def __sample_class(self, ignore_classes=None):
class_name = random.sample(self.classes, 1)[0]
# if list of classes_id is provide make sure that it's will be ignored
if ignore_classes and self.classname_to_classid[class_name] in ignore_classes:
while True:
class_name = random.sample(self.classes, 1)[0]
if self.classname_to_classid[class_name] not in ignore_classes:
break
if self.num_utter_per_class > len(self.class_to_utters[class_name]):
utters = random.choices(self.class_to_utters[class_name], k=self.num_utter_per_class)
else:
utters = random.sample(self.class_to_utters[class_name], self.num_utter_per_class)
return class_name, utters
def __sample_class_utterances(self, class_name):
"""
Sample all M utterances for the given class_name.
"""
wavs = []
labels = []
for _ in range(self.num_utter_per_class):
# TODO:dummy but works
while True:
# remove classes that have num_utter less than 2
if len(self.class_to_utters[class_name]) > 1:
utter = random.sample(self.class_to_utters[class_name], 1)[0]
else:
if class_name in self.classes:
self.classes.remove(class_name)
class_name, _ = self.__sample_class()
continue
wav = self.load_wav(utter)
if wav.shape[0] - self.seq_len > 0:
break
if utter in self.class_to_utters[class_name]:
self.class_to_utters[class_name].remove(utter)
if self.augmentator is not None and self.data_augmentation_p:
if random.random() < self.data_augmentation_p:
wav = self.augmentator.apply_one(wav)
wavs.append(wav)
labels.append(self.classname_to_classid[class_name])
return wavs, labels
def __getitem__(self, idx):
class_name, _ = self.__sample_class()
class_id = self.classname_to_classid[class_name]
return class_name, class_id
def __load_from_disk_and_storage(self, class_name):
# don't sample from storage, but from HDD
wavs_, labels_ = self.__sample_class_utterances(class_name)
# put the newly loaded item into storage
self.storage.append((wavs_, labels_))
return wavs_, labels_
def collate_fn(self, batch):
# get the batch class_ids
batch = np.array(batch)
classes_id_in_batch = set(batch[:, 1].astype(np.int32))
labels = []
feats = []
classes = set()
for class_name, class_id in batch:
class_id = int(class_id)
# ensure that an class appears only once in the batch
if class_id in classes:
# remove current class
if class_id in classes_id_in_batch:
classes_id_in_batch.remove(class_id)
class_name, _ = self.__sample_class(ignore_classes=classes_id_in_batch)
class_id = self.classname_to_classid[class_name]
classes_id_in_batch.add(class_id)
if random.random() < self.sample_from_storage_p and self.storage.full():
# sample from storage (if full)
wavs_, labels_ = self.storage.get_random_sample_fast()
# force choose the current class or other not in batch
# It's necessary for ideal training with AngleProto and GE2E losses
if labels_[0] in classes_id_in_batch and labels_[0] != class_id:
attempts = 0
while True:
wavs_, labels_ = self.storage.get_random_sample_fast()
if labels_[0] == class_id or labels_[0] not in classes_id_in_batch:
break
attempts += 1
# Try 5 times after that load from disk
if attempts >= 5:
wavs_, labels_ = self.__load_from_disk_and_storage(class_name)
break
else:
# don't sample from storage, but from HDD
wavs_, labels_ = self.__load_from_disk_and_storage(class_name)
# append class for control
classes.add(labels_[0])
# remove current class and append other
if class_id in classes_id_in_batch:
classes_id_in_batch.remove(class_id)
classes_id_in_batch.add(labels_[0])
# get a random subset of each of the wavs and extract mel spectrograms.
feats_ = []
for wav in wavs_:
offset = random.randint(0, wav.shape[0] - self.seq_len)
wav = wav[offset : offset + self.seq_len]
# add random gaussian noise
if self.gaussian_augmentation_config and self.gaussian_augmentation_config["p"]:
if random.random() < self.gaussian_augmentation_config["p"]:
wav += np.random.normal(
self.gaussian_augmentation_config["min_amplitude"],
self.gaussian_augmentation_config["max_amplitude"],
size=len(wav),
)
if not self.use_torch_spec:
mel = self.ap.melspectrogram(wav)
feats_.append(torch.FloatTensor(mel))
else:
feats_.append(torch.FloatTensor(wav))
labels.append(torch.LongTensor(labels_))
feats.extend(feats_)
feats = torch.stack(feats)
labels = torch.stack(labels)
return feats, labels