mirror of https://github.com/coqui-ai/TTS.git
250 lines
9.5 KiB
Python
250 lines
9.5 KiB
Python
import random
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.data import Dataset
|
|
|
|
from TTS.encoder.utils.generic_utils import AugmentWAV, Storage
|
|
|
|
|
|
class EncoderDataset(Dataset):
|
|
def __init__(
|
|
self,
|
|
ap,
|
|
meta_data,
|
|
voice_len=1.6,
|
|
num_classes_in_batch=64,
|
|
storage_size=1,
|
|
sample_from_storage_p=0.5,
|
|
num_utter_per_class=10,
|
|
skip_classes=False,
|
|
verbose=False,
|
|
augmentation_config=None,
|
|
use_torch_spec=None,
|
|
):
|
|
"""
|
|
Args:
|
|
ap (TTS.tts.utils.AudioProcessor): audio processor object.
|
|
meta_data (list): list of dataset instances.
|
|
seq_len (int): voice segment length in seconds.
|
|
verbose (bool): print diagnostic information.
|
|
"""
|
|
super().__init__()
|
|
self.items = meta_data
|
|
self.sample_rate = ap.sample_rate
|
|
self.seq_len = int(voice_len * self.sample_rate)
|
|
self.num_classes_in_batch = num_classes_in_batch
|
|
self.num_utter_per_class = num_utter_per_class
|
|
self.skip_classes = skip_classes
|
|
self.ap = ap
|
|
self.verbose = verbose
|
|
self.use_torch_spec = use_torch_spec
|
|
self.__parse_items()
|
|
|
|
storage_max_size = storage_size * num_classes_in_batch
|
|
self.storage = Storage(
|
|
maxsize=storage_max_size, storage_batchs=storage_size, num_classes_in_batch=num_classes_in_batch
|
|
)
|
|
self.sample_from_storage_p = float(sample_from_storage_p)
|
|
|
|
classes_aux = list(self.classes)
|
|
classes_aux.sort()
|
|
self.classname_to_classid = {key: i for i, key in enumerate(classes_aux)}
|
|
|
|
# Augmentation
|
|
self.augmentator = None
|
|
self.gaussian_augmentation_config = None
|
|
if augmentation_config:
|
|
self.data_augmentation_p = augmentation_config["p"]
|
|
if self.data_augmentation_p and ("additive" in augmentation_config or "rir" in augmentation_config):
|
|
self.augmentator = AugmentWAV(ap, augmentation_config)
|
|
|
|
if "gaussian" in augmentation_config.keys():
|
|
self.gaussian_augmentation_config = augmentation_config["gaussian"]
|
|
|
|
if self.verbose:
|
|
print("\n > DataLoader initialization")
|
|
print(f" | > Classes per Batch: {num_classes_in_batch}")
|
|
print(f" | > Storage Size: {storage_max_size} instances, each with {num_utter_per_class} utters")
|
|
print(f" | > Sample_from_storage_p : {self.sample_from_storage_p}")
|
|
print(f" | > Number of instances : {len(self.items)}")
|
|
print(f" | > Sequence length: {self.seq_len}")
|
|
print(f" | > Num Classes: {len(self.classes)}")
|
|
print(f" | > Classes: {list(self.classes)}")
|
|
|
|
|
|
def load_wav(self, filename):
|
|
audio = self.ap.load_wav(filename, sr=self.ap.sample_rate)
|
|
return audio
|
|
|
|
def __parse_items(self):
|
|
self.class_to_utters = {}
|
|
for i in self.items:
|
|
path_ = i["audio_file"]
|
|
speaker_ = i["speaker_name"]
|
|
if speaker_ in self.speaker_to_utters.keys():
|
|
self.speaker_to_utters[speaker_].append(path_)
|
|
else:
|
|
self.class_to_utters[class_name] = [
|
|
path_,
|
|
]
|
|
|
|
if self.skip_classes:
|
|
self.class_to_utters = {
|
|
k: v for (k, v) in self.class_to_utters.items() if len(v) >= self.num_utter_per_class
|
|
}
|
|
|
|
self.classes = [k for (k, v) in self.class_to_utters.items()]
|
|
|
|
def __len__(self):
|
|
return int(1e10)
|
|
|
|
def get_num_classes(self):
|
|
return len(self.classes)
|
|
|
|
def get_map_classid_to_classname(self):
|
|
return dict((c_id, c_n) for c_n, c_id in self.classname_to_classid.items())
|
|
|
|
def __sample_class(self, ignore_classes=None):
|
|
class_name = random.sample(self.classes, 1)[0]
|
|
# if list of classes_id is provide make sure that it's will be ignored
|
|
if ignore_classes and self.classname_to_classid[class_name] in ignore_classes:
|
|
while True:
|
|
class_name = random.sample(self.classes, 1)[0]
|
|
if self.classname_to_classid[class_name] not in ignore_classes:
|
|
break
|
|
|
|
if self.num_utter_per_class > len(self.class_to_utters[class_name]):
|
|
utters = random.choices(self.class_to_utters[class_name], k=self.num_utter_per_class)
|
|
else:
|
|
utters = random.sample(self.class_to_utters[class_name], self.num_utter_per_class)
|
|
return class_name, utters
|
|
|
|
def __sample_class_utterances(self, class_name):
|
|
"""
|
|
Sample all M utterances for the given class_name.
|
|
"""
|
|
wavs = []
|
|
labels = []
|
|
for _ in range(self.num_utter_per_class):
|
|
# TODO:dummy but works
|
|
while True:
|
|
# remove classes that have num_utter less than 2
|
|
if len(self.class_to_utters[class_name]) > 1:
|
|
utter = random.sample(self.class_to_utters[class_name], 1)[0]
|
|
else:
|
|
if class_name in self.classes:
|
|
self.classes.remove(class_name)
|
|
|
|
class_name, _ = self.__sample_class()
|
|
continue
|
|
|
|
wav = self.load_wav(utter)
|
|
if wav.shape[0] - self.seq_len > 0:
|
|
break
|
|
|
|
if utter in self.class_to_utters[class_name]:
|
|
self.class_to_utters[class_name].remove(utter)
|
|
|
|
if self.augmentator is not None and self.data_augmentation_p:
|
|
if random.random() < self.data_augmentation_p:
|
|
wav = self.augmentator.apply_one(wav)
|
|
|
|
wavs.append(wav)
|
|
labels.append(self.classname_to_classid[class_name])
|
|
return wavs, labels
|
|
|
|
def __getitem__(self, idx):
|
|
class_name, _ = self.__sample_class()
|
|
class_id = self.classname_to_classid[class_name]
|
|
return class_name, class_id
|
|
|
|
def __load_from_disk_and_storage(self, class_name):
|
|
# don't sample from storage, but from HDD
|
|
wavs_, labels_ = self.__sample_class_utterances(class_name)
|
|
# put the newly loaded item into storage
|
|
self.storage.append((wavs_, labels_))
|
|
return wavs_, labels_
|
|
|
|
def collate_fn(self, batch):
|
|
# get the batch class_ids
|
|
batch = np.array(batch)
|
|
classes_id_in_batch = set(batch[:, 1].astype(np.int32))
|
|
|
|
labels = []
|
|
feats = []
|
|
classes = set()
|
|
|
|
for class_name, class_id in batch:
|
|
class_id = int(class_id)
|
|
|
|
# ensure that an class appears only once in the batch
|
|
if class_id in classes:
|
|
|
|
# remove current class
|
|
if class_id in classes_id_in_batch:
|
|
classes_id_in_batch.remove(class_id)
|
|
|
|
class_name, _ = self.__sample_class(ignore_classes=classes_id_in_batch)
|
|
class_id = self.classname_to_classid[class_name]
|
|
classes_id_in_batch.add(class_id)
|
|
|
|
if random.random() < self.sample_from_storage_p and self.storage.full():
|
|
# sample from storage (if full)
|
|
wavs_, labels_ = self.storage.get_random_sample_fast()
|
|
|
|
# force choose the current class or other not in batch
|
|
# It's necessary for ideal training with AngleProto and GE2E losses
|
|
if labels_[0] in classes_id_in_batch and labels_[0] != class_id:
|
|
attempts = 0
|
|
while True:
|
|
wavs_, labels_ = self.storage.get_random_sample_fast()
|
|
if labels_[0] == class_id or labels_[0] not in classes_id_in_batch:
|
|
break
|
|
|
|
attempts += 1
|
|
# Try 5 times after that load from disk
|
|
if attempts >= 5:
|
|
wavs_, labels_ = self.__load_from_disk_and_storage(class_name)
|
|
break
|
|
else:
|
|
# don't sample from storage, but from HDD
|
|
wavs_, labels_ = self.__load_from_disk_and_storage(class_name)
|
|
|
|
# append class for control
|
|
classes.add(labels_[0])
|
|
|
|
# remove current class and append other
|
|
if class_id in classes_id_in_batch:
|
|
classes_id_in_batch.remove(class_id)
|
|
|
|
classes_id_in_batch.add(labels_[0])
|
|
|
|
# get a random subset of each of the wavs and extract mel spectrograms.
|
|
feats_ = []
|
|
for wav in wavs_:
|
|
offset = random.randint(0, wav.shape[0] - self.seq_len)
|
|
wav = wav[offset : offset + self.seq_len]
|
|
# add random gaussian noise
|
|
if self.gaussian_augmentation_config and self.gaussian_augmentation_config["p"]:
|
|
if random.random() < self.gaussian_augmentation_config["p"]:
|
|
wav += np.random.normal(
|
|
self.gaussian_augmentation_config["min_amplitude"],
|
|
self.gaussian_augmentation_config["max_amplitude"],
|
|
size=len(wav),
|
|
)
|
|
|
|
if not self.use_torch_spec:
|
|
mel = self.ap.melspectrogram(wav)
|
|
feats_.append(torch.FloatTensor(mel))
|
|
else:
|
|
feats_.append(torch.FloatTensor(wav))
|
|
|
|
labels.append(torch.LongTensor(labels_))
|
|
feats.extend(feats_)
|
|
|
|
feats = torch.stack(feats)
|
|
labels = torch.stack(labels)
|
|
|
|
return feats, labels
|