coqui-tts/TTS/tts/layers/glow_tts/glow.py

335 lines
12 KiB
Python

import torch
from torch import nn
from torch.nn import functional as F
from .normalization import LayerNorm
class ConvLayerNorm(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size,
num_layers, dropout_p):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.num_layers = num_layers
self.dropout_p = dropout_p
assert num_layers > 1, " [!] number of layers should be > 0."
assert kernel_size % 2 == 1, " [!] kernel size should be odd number."
self.conv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
self.conv_layers.append(
nn.Conv1d(in_channels,
hidden_channels,
kernel_size,
padding=kernel_size // 2))
self.norm_layers.append(LayerNorm(hidden_channels))
for _ in range(num_layers - 1):
self.conv_layers.append(
nn.Conv1d(hidden_channels,
hidden_channels,
kernel_size,
padding=kernel_size // 2))
self.norm_layers.append(LayerNorm(hidden_channels))
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask):
x_res = x
for i in range(self.num_layers):
x = self.conv_layers[i](x * x_mask)
x = self.norm_layers[i](x * x_mask)
x = F.dropout(F.relu(x), self.dropout_p, training=self.training)
x = x_res + self.proj(x)
return x * x_mask
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
n_channels_int = n_channels[0]
in_act = input_a + input_b
t_act = torch.tanh(in_act[:, :n_channels_int, :])
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
acts = t_act * s_act
return acts
class WN(torch.nn.Module):
def __init__(self,
in_channels,
hidden_channels,
kernel_size,
dilation_rate,
num_layers,
c_in_channels=0,
dropout_p=0):
super(WN, self).__init__()
assert kernel_size % 2 == 1
assert hidden_channels % 2 == 0
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.num_layers = num_layers
self.c_in_channels = c_in_channels
self.dropout_p = dropout_p
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.dropout = nn.Dropout(dropout_p)
if c_in_channels != 0:
cond_layer = torch.nn.Conv1d(c_in_channels,
2 * hidden_channels * num_layers, 1)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer,
name='weight')
for i in range(num_layers):
dilation = dilation_rate**i
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = torch.nn.Conv1d(hidden_channels,
2 * hidden_channels,
kernel_size,
dilation=dilation,
padding=padding)
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
self.in_layers.append(in_layer)
if i < num_layers - 1:
res_skip_channels = 2 * hidden_channels
else:
res_skip_channels = hidden_channels
res_skip_layer = torch.nn.Conv1d(hidden_channels,
res_skip_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer,
name='weight')
self.res_skip_layers.append(res_skip_layer)
def forward(self, x, x_mask=None, g=None, **kwargs): # pylint: disable=unused-argument
output = torch.zeros_like(x)
n_channels_tensor = torch.IntTensor([self.hidden_channels])
if g is not None:
g = self.cond_layer(g)
for i in range(self.num_layers):
x_in = self.in_layers[i](x)
x_in = self.dropout(x_in)
if g is not None:
cond_offset = i * 2 * self.hidden_channels
g_l = g[:,
cond_offset:cond_offset + 2 * self.hidden_channels, :]
else:
g_l = torch.zeros_like(x_in)
acts = fused_add_tanh_sigmoid_multiply(x_in, g_l,
n_channels_tensor)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.num_layers - 1:
x = (x + res_skip_acts[:, :self.hidden_channels, :]) * x_mask
output = output + res_skip_acts[:, self.hidden_channels:, :]
else:
output = output + res_skip_acts
return output * x_mask
def remove_weight_norm(self):
if self.c_in_channels != 0:
torch.nn.utils.remove_weight_norm(self.cond_layer)
for l in self.in_layers:
torch.nn.utils.remove_weight_norm(l)
for l in self.res_skip_layers:
torch.nn.utils.remove_weight_norm(l)
class ActNorm(nn.Module):
"""Activation Normalization bijector as an alternative to Batch Norm. It computes
mean and std from a sample data in advance and it uses these values
for normalization at training.
Args:
channels (int): input channels.
ddi (False): data depended initialization flag.
Shapes:
- inputs: (B, C, T)
- outputs: (B, C, T)
"""
def __init__(self, channels, ddi=False, **kwargs): # pylint: disable=unused-argument
super().__init__()
self.channels = channels
self.initialized = not ddi
self.logs = nn.Parameter(torch.zeros(1, channels, 1))
self.bias = nn.Parameter(torch.zeros(1, channels, 1))
def forward(self, x, x_mask=None, reverse=False, **kwargs): # pylint: disable=unused-argument
if x_mask is None:
x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device,
dtype=x.dtype)
x_len = torch.sum(x_mask, [1, 2])
if not self.initialized:
self.initialize(x, x_mask)
self.initialized = True
if reverse:
z = (x - self.bias) * torch.exp(-self.logs) * x_mask
logdet = None
else:
z = (self.bias + torch.exp(self.logs) * x) * x_mask
logdet = torch.sum(self.logs) * x_len # [b]
return z, logdet
def store_inverse(self):
pass
def set_ddi(self, ddi):
self.initialized = not ddi
def initialize(self, x, x_mask):
with torch.no_grad():
denom = torch.sum(x_mask, [0, 2])
m = torch.sum(x * x_mask, [0, 2]) / denom
m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom
v = m_sq - (m**2)
logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6))
bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to(
dtype=self.bias.dtype)
logs_init = (-logs).view(*self.logs.shape).to(
dtype=self.logs.dtype)
self.bias.data.copy_(bias_init)
self.logs.data.copy_(logs_init)
class InvConvNear(nn.Module):
def __init__(self, channels, num_splits=4, no_jacobian=False, **kwargs): # pylint: disable=unused-argument
super().__init__()
assert num_splits % 2 == 0
self.channels = channels
self.num_splits = num_splits
self.no_jacobian = no_jacobian
self.weight_inv = None
w_init = torch.qr(
torch.FloatTensor(self.num_splits, self.num_splits).normal_())[0]
if torch.det(w_init) < 0:
w_init[:, 0] = -1 * w_init[:, 0]
self.weight = nn.Parameter(w_init)
def forward(self, x, x_mask=None, reverse=False, **kwargs): # pylint: disable=unused-argument
"""Split the input into groups of size self.num_splits and
perform 1x1 convolution separately. Cast 1x1 conv operation
to 2d by reshaping the input for efficienty.
"""
b, c, t = x.size()
assert c % self.num_splits == 0
if x_mask is None:
x_mask = 1
x_len = torch.ones((b, ), dtype=x.dtype, device=x.device) * t
else:
x_len = torch.sum(x_mask, [1, 2])
x = x.view(b, 2, c // self.num_splits, self.num_splits // 2, t)
x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.num_splits,
c // self.num_splits, t)
if reverse:
if self.weight_inv is not None:
weight = self.weight_inv
else:
weight = torch.inverse(
self.weight.float()).to(dtype=self.weight.dtype)
logdet = None
else:
weight = self.weight
if self.no_jacobian:
logdet = 0
else:
logdet = torch.logdet(
self.weight) * (c / self.num_splits) * x_len # [b]
weight = weight.view(self.num_splits, self.num_splits, 1, 1)
z = F.conv2d(x, weight)
z = z.view(b, 2, self.num_splits // 2, c // self.num_splits, t)
z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask
return z, logdet
def store_inverse(self):
self.weight_inv = torch.inverse(
self.weight.float()).to(dtype=self.weight.dtype)
class CouplingBlock(nn.Module):
def __init__(self,
in_channels,
hidden_channels,
kernel_size,
dilation_rate,
num_layers,
c_in_channels=0,
dropout_p=0,
sigmoid_scale=False):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.num_layers = num_layers
self.c_in_channels = c_in_channels
self.dropout_p = dropout_p
self.sigmoid_scale = sigmoid_scale
start = torch.nn.Conv1d(in_channels // 2, hidden_channels, 1)
start = torch.nn.utils.weight_norm(start)
self.start = start
# Initializing last layer to 0 makes the affine coupling layers
# do nothing at first. This helps with training stability
end = torch.nn.Conv1d(hidden_channels, in_channels, 1)
end.weight.data.zero_()
end.bias.data.zero_()
self.end = end
self.wn = WN(in_channels, hidden_channels, kernel_size, dilation_rate,
num_layers, c_in_channels, dropout_p)
def forward(self, x, x_mask=None, reverse=False, g=None, **kwargs): # pylint: disable=unused-argument
if x_mask is None:
x_mask = 1
x_0, x_1 = x[:, :self.in_channels // 2], x[:, self.in_channels // 2:]
x = self.start(x_0) * x_mask
x = self.wn(x, x_mask, g)
out = self.end(x)
z_0 = x_0
m = out[:, :self.in_channels // 2, :]
logs = out[:, self.in_channels // 2:, :]
if self.sigmoid_scale:
logs = torch.log(1e-6 + torch.sigmoid(logs + 2))
if reverse:
z_1 = (x_1 - m) * torch.exp(-logs) * x_mask
logdet = None
else:
z_1 = (m + torch.exp(logs) * x_1) * x_mask
logdet = torch.sum(logs * x_mask, [1, 2])
z = torch.cat([z_0, z_1], 1)
return z, logdet
def store_inverse(self):
self.wn.remove_weight_norm()