mirror of https://github.com/coqui-ai/TTS.git
438 lines
14 KiB
Python
Executable File
438 lines
14 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import argparse
|
|
import sys
|
|
from argparse import RawTextHelpFormatter
|
|
|
|
# pylint: disable=redefined-outer-name, unused-argument
|
|
from pathlib import Path
|
|
|
|
from TTS.api import TTS
|
|
from TTS.utils.manage import ModelManager
|
|
from TTS.utils.synthesizer import Synthesizer
|
|
|
|
|
|
def str2bool(v):
|
|
if isinstance(v, bool):
|
|
return v
|
|
if v.lower() in ("yes", "true", "t", "y", "1"):
|
|
return True
|
|
if v.lower() in ("no", "false", "f", "n", "0"):
|
|
return False
|
|
raise argparse.ArgumentTypeError("Boolean value expected.")
|
|
|
|
|
|
def main():
|
|
description = """Synthesize speech on command line.
|
|
|
|
You can either use your trained model or choose a model from the provided list.
|
|
|
|
If you don't specify any models, then it uses LJSpeech based English model.
|
|
|
|
## Example Runs
|
|
|
|
### Single Speaker Models
|
|
|
|
- List provided models:
|
|
|
|
```
|
|
$ tts --list_models
|
|
```
|
|
|
|
- Query info for model info by idx:
|
|
|
|
```
|
|
$ tts --model_info_by_idx "<model_type>/<model_query_idx>"
|
|
```
|
|
|
|
- Query info for model info by full name:
|
|
|
|
```
|
|
$ tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>"
|
|
```
|
|
|
|
- Run TTS with default models:
|
|
|
|
```
|
|
$ tts --text "Text for TTS"
|
|
```
|
|
|
|
- Run a TTS model with its default vocoder model:
|
|
|
|
```
|
|
$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>
|
|
```
|
|
|
|
- Run with specific TTS and vocoder models from the list:
|
|
|
|
```
|
|
$ tts --text "Text for TTS" --model_name "<model_type>/<language>/<dataset>/<model_name>" --vocoder_name "<model_type>/<language>/<dataset>/<model_name>" --output_path
|
|
```
|
|
|
|
- Run your own TTS model (Using Griffin-Lim Vocoder):
|
|
|
|
```
|
|
$ tts --text "Text for TTS" --model_path path/to/model.pth --config_path path/to/config.json --out_path output/path/speech.wav
|
|
```
|
|
|
|
- Run your own TTS and Vocoder models:
|
|
```
|
|
$ tts --text "Text for TTS" --model_path path/to/config.json --config_path path/to/model.pth --out_path output/path/speech.wav
|
|
--vocoder_path path/to/vocoder.pth --vocoder_config_path path/to/vocoder_config.json
|
|
```
|
|
|
|
### Multi-speaker Models
|
|
|
|
- List the available speakers and choose as <speaker_id> among them:
|
|
|
|
```
|
|
$ tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs
|
|
```
|
|
|
|
- Run the multi-speaker TTS model with the target speaker ID:
|
|
|
|
```
|
|
$ tts --text "Text for TTS." --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id>
|
|
```
|
|
|
|
- Run your own multi-speaker TTS model:
|
|
|
|
```
|
|
$ tts --text "Text for TTS" --out_path output/path/speech.wav --model_path path/to/config.json --config_path path/to/model.pth --speakers_file_path path/to/speaker.json --speaker_idx <speaker_id>
|
|
```
|
|
|
|
### Voice Conversion Models
|
|
|
|
```
|
|
$ tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" --source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav>
|
|
```
|
|
"""
|
|
# We remove Markdown code formatting programmatically here to allow us to copy-and-paste from main README to keep
|
|
# documentation in sync more easily.
|
|
parser = argparse.ArgumentParser(
|
|
description=description.replace(" ```\n", ""),
|
|
formatter_class=RawTextHelpFormatter,
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--list_models",
|
|
type=str2bool,
|
|
nargs="?",
|
|
const=True,
|
|
default=False,
|
|
help="list available pre-trained TTS and vocoder models.",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--model_info_by_idx",
|
|
type=str,
|
|
default=None,
|
|
help="model info using query format: <model_type>/<model_query_idx>",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--model_info_by_name",
|
|
type=str,
|
|
default=None,
|
|
help="model info using query format: <model_type>/<language>/<dataset>/<model_name>",
|
|
)
|
|
|
|
parser.add_argument("--text", type=str, default=None, help="Text to generate speech.")
|
|
|
|
# Args for running pre-trained TTS models.
|
|
parser.add_argument(
|
|
"--model_name",
|
|
type=str,
|
|
default="tts_models/en/ljspeech/tacotron2-DDC",
|
|
help="Name of one of the pre-trained TTS models in format <language>/<dataset>/<model_name>",
|
|
)
|
|
parser.add_argument(
|
|
"--vocoder_name",
|
|
type=str,
|
|
default=None,
|
|
help="Name of one of the pre-trained vocoder models in format <language>/<dataset>/<model_name>",
|
|
)
|
|
|
|
# Args for running custom models
|
|
parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.")
|
|
parser.add_argument(
|
|
"--model_path",
|
|
type=str,
|
|
default=None,
|
|
help="Path to model file.",
|
|
)
|
|
parser.add_argument(
|
|
"--out_path",
|
|
type=str,
|
|
default="tts_output.wav",
|
|
help="Output wav file path.",
|
|
)
|
|
parser.add_argument("--use_cuda", type=bool, help="Run model on CUDA.", default=False)
|
|
parser.add_argument(
|
|
"--vocoder_path",
|
|
type=str,
|
|
help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).",
|
|
default=None,
|
|
)
|
|
parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None)
|
|
parser.add_argument(
|
|
"--encoder_path",
|
|
type=str,
|
|
help="Path to speaker encoder model file.",
|
|
default=None,
|
|
)
|
|
parser.add_argument("--encoder_config_path", type=str, help="Path to speaker encoder config file.", default=None)
|
|
|
|
# args for coqui studio
|
|
parser.add_argument(
|
|
"--emotion",
|
|
type=str,
|
|
help="Emotion to condition the model with. Only available for 🐸Coqui Studio models.",
|
|
default="Neutral",
|
|
)
|
|
|
|
# args for multi-speaker synthesis
|
|
parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None)
|
|
parser.add_argument("--language_ids_file_path", type=str, help="JSON file for multi-lingual model.", default=None)
|
|
parser.add_argument(
|
|
"--speaker_idx",
|
|
type=str,
|
|
help="Target speaker ID for a multi-speaker TTS model.",
|
|
default=None,
|
|
)
|
|
parser.add_argument(
|
|
"--language_idx",
|
|
type=str,
|
|
help="Target language ID for a multi-lingual TTS model.",
|
|
default=None,
|
|
)
|
|
parser.add_argument(
|
|
"--speaker_wav",
|
|
nargs="+",
|
|
help="wav file(s) to condition a multi-speaker TTS model with a Speaker Encoder. You can give multiple file paths. The d_vectors is computed as their average.",
|
|
default=None,
|
|
)
|
|
parser.add_argument("--gst_style", help="Wav path file for GST style reference.", default=None)
|
|
parser.add_argument(
|
|
"--capacitron_style_wav", type=str, help="Wav path file for Capacitron prosody reference.", default=None
|
|
)
|
|
parser.add_argument("--capacitron_style_text", type=str, help="Transcription of the reference.", default=None)
|
|
parser.add_argument(
|
|
"--list_speaker_idxs",
|
|
help="List available speaker ids for the defined multi-speaker model.",
|
|
type=str2bool,
|
|
nargs="?",
|
|
const=True,
|
|
default=False,
|
|
)
|
|
parser.add_argument(
|
|
"--list_language_idxs",
|
|
help="List available language ids for the defined multi-lingual model.",
|
|
type=str2bool,
|
|
nargs="?",
|
|
const=True,
|
|
default=False,
|
|
)
|
|
# aux args
|
|
parser.add_argument(
|
|
"--save_spectogram",
|
|
type=bool,
|
|
help="If true save raw spectogram for further (vocoder) processing in out_path.",
|
|
default=False,
|
|
)
|
|
parser.add_argument(
|
|
"--reference_wav",
|
|
type=str,
|
|
help="Reference wav file to convert in the voice of the speaker_idx or speaker_wav",
|
|
default=None,
|
|
)
|
|
parser.add_argument(
|
|
"--reference_speaker_idx",
|
|
type=str,
|
|
help="speaker ID of the reference_wav speaker (If not provided the embedding will be computed using the Speaker Encoder).",
|
|
default=None,
|
|
)
|
|
parser.add_argument(
|
|
"--progress_bar",
|
|
type=str2bool,
|
|
help="If true shows a progress bar for the model download. Defaults to True",
|
|
default=True,
|
|
)
|
|
|
|
# voice conversion args
|
|
parser.add_argument(
|
|
"--source_wav",
|
|
type=str,
|
|
default=None,
|
|
help="Original audio file to convert in the voice of the target_wav",
|
|
)
|
|
parser.add_argument(
|
|
"--target_wav",
|
|
type=str,
|
|
default=None,
|
|
help="Target audio file to convert in the voice of the source_wav",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# print the description if either text or list_models is not set
|
|
check_args = [
|
|
args.text,
|
|
args.list_models,
|
|
args.list_speaker_idxs,
|
|
args.list_language_idxs,
|
|
args.reference_wav,
|
|
args.model_info_by_idx,
|
|
args.model_info_by_name,
|
|
args.source_wav,
|
|
args.target_wav,
|
|
]
|
|
if not any(check_args):
|
|
parser.parse_args(["-h"])
|
|
|
|
# load model manager
|
|
path = Path(__file__).parent / "../.models.json"
|
|
manager = ModelManager(path, progress_bar=args.progress_bar)
|
|
api = TTS()
|
|
|
|
tts_path = None
|
|
tts_config_path = None
|
|
speakers_file_path = None
|
|
language_ids_file_path = None
|
|
vocoder_path = None
|
|
vocoder_config_path = None
|
|
encoder_path = None
|
|
encoder_config_path = None
|
|
vc_path = None
|
|
vc_config_path = None
|
|
|
|
# CASE1 #list : list pre-trained TTS models
|
|
if args.list_models:
|
|
manager.add_cs_api_models(api.list_models())
|
|
manager.list_models()
|
|
sys.exit()
|
|
|
|
# CASE2 #info : model info for pre-trained TTS models
|
|
if args.model_info_by_idx:
|
|
model_query = args.model_info_by_idx
|
|
manager.model_info_by_idx(model_query)
|
|
sys.exit()
|
|
|
|
if args.model_info_by_name:
|
|
model_query_full_name = args.model_info_by_name
|
|
manager.model_info_by_full_name(model_query_full_name)
|
|
sys.exit()
|
|
|
|
# CASE3: TTS with coqui studio models
|
|
if "coqui_studio" in args.model_name:
|
|
print(" > Using 🐸Coqui Studio model: ", args.model_name)
|
|
api = TTS(model_name=args.model_name)
|
|
api.tts_to_file(text=args.text, emotion=args.emotion, file_path=args.out_path)
|
|
print(" > Saving output to ", args.out_path)
|
|
return
|
|
|
|
# CASE4: load pre-trained model paths
|
|
if args.model_name is not None and not args.model_path:
|
|
model_path, config_path, model_item = manager.download_model(args.model_name)
|
|
|
|
# tts model
|
|
if model_item["model_type"] == "tts_models":
|
|
tts_path = model_path
|
|
tts_config_path = config_path
|
|
if "default_vocoder" in model_item:
|
|
args.vocoder_name = model_item["default_vocoder"] if args.vocoder_name is None else args.vocoder_name
|
|
|
|
# voice conversion model
|
|
if model_item["model_type"] == "voice_conversion_models":
|
|
vc_path = model_path
|
|
vc_config_path = config_path
|
|
|
|
# load vocoder
|
|
if args.vocoder_name is not None and not args.vocoder_path:
|
|
vocoder_path, vocoder_config_path, _ = manager.download_model(args.vocoder_name)
|
|
|
|
# CASE5: set custom model paths
|
|
if args.model_path is not None:
|
|
tts_path = args.model_path
|
|
tts_config_path = args.config_path
|
|
speakers_file_path = args.speakers_file_path
|
|
language_ids_file_path = args.language_ids_file_path
|
|
|
|
if args.vocoder_path is not None:
|
|
vocoder_path = args.vocoder_path
|
|
vocoder_config_path = args.vocoder_config_path
|
|
|
|
if args.encoder_path is not None:
|
|
encoder_path = args.encoder_path
|
|
encoder_config_path = args.encoder_config_path
|
|
|
|
# load models
|
|
synthesizer = Synthesizer(
|
|
tts_path,
|
|
tts_config_path,
|
|
speakers_file_path,
|
|
language_ids_file_path,
|
|
vocoder_path,
|
|
vocoder_config_path,
|
|
encoder_path,
|
|
encoder_config_path,
|
|
vc_path,
|
|
vc_config_path,
|
|
args.use_cuda,
|
|
)
|
|
|
|
# query speaker ids of a multi-speaker model.
|
|
if args.list_speaker_idxs:
|
|
print(
|
|
" > Available speaker ids: (Set --speaker_idx flag to one of these values to use the multi-speaker model."
|
|
)
|
|
print(synthesizer.tts_model.speaker_manager.name_to_id)
|
|
return
|
|
|
|
# query langauge ids of a multi-lingual model.
|
|
if args.list_language_idxs:
|
|
print(
|
|
" > Available language ids: (Set --language_idx flag to one of these values to use the multi-lingual model."
|
|
)
|
|
print(synthesizer.tts_model.language_manager.name_to_id)
|
|
return
|
|
|
|
# check the arguments against a multi-speaker model.
|
|
if synthesizer.tts_speakers_file and (not args.speaker_idx and not args.speaker_wav):
|
|
print(
|
|
" [!] Looks like you use a multi-speaker model. Define `--speaker_idx` to "
|
|
"select the target speaker. You can list the available speakers for this model by `--list_speaker_idxs`."
|
|
)
|
|
return
|
|
|
|
# RUN THE SYNTHESIS
|
|
if args.text:
|
|
print(" > Text: {}".format(args.text))
|
|
|
|
# kick it
|
|
if tts_path is not None:
|
|
wav = synthesizer.tts(
|
|
args.text,
|
|
args.speaker_idx,
|
|
args.language_idx,
|
|
args.speaker_wav,
|
|
reference_wav=args.reference_wav,
|
|
style_wav=args.capacitron_style_wav,
|
|
style_text=args.capacitron_style_text,
|
|
reference_speaker_name=args.reference_speaker_idx,
|
|
)
|
|
elif vc_path is not None:
|
|
wav = synthesizer.voice_conversion(
|
|
source_wav=args.source_wav,
|
|
target_wav=args.target_wav,
|
|
)
|
|
|
|
# save the results
|
|
print(" > Saving output to {}".format(args.out_path))
|
|
synthesizer.save_wav(wav, args.out_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|