mirror of https://github.com/coqui-ai/TTS.git
168 lines
6.3 KiB
Python
168 lines
6.3 KiB
Python
import argparse
|
|
import importlib
|
|
import os
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
from tqdm import tqdm
|
|
from argparse import RawTextHelpFormatter
|
|
from TTS.tts.datasets.TTSDataset import MyDataset
|
|
from TTS.tts.utils.generic_utils import setup_model
|
|
from TTS.tts.utils.io import load_checkpoint
|
|
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
|
|
from TTS.utils.audio import AudioProcessor
|
|
from TTS.utils.io import load_config
|
|
|
|
|
|
if __name__ == '__main__':
|
|
# pylint: disable=bad-continuation
|
|
parser = argparse.ArgumentParser(
|
|
description='''Extract attention masks from trained Tacotron/Tacotron2 models.
|
|
These masks can be used for different purposes including training a TTS model with a Duration Predictor.\n\n'''
|
|
|
|
'''Each attention mask is written to the same path as the input wav file with ".npy" file extension.
|
|
(e.g. path/bla.wav (wav file) --> path/bla.npy (attention mask))\n'''
|
|
|
|
'''
|
|
Example run:
|
|
CUDA_VISIBLE_DEVICE="0" python TTS/bin/compute_attention_masks.py
|
|
--model_path /data/rw/home/Models/ljspeech-dcattn-December-14-2020_11+10AM-9d0e8c7/checkpoint_200000.pth.tar
|
|
--config_path /data/rw/home/Models/ljspeech-dcattn-December-14-2020_11+10AM-9d0e8c7/config.json
|
|
--dataset_metafile /root/LJSpeech-1.1/metadata.csv
|
|
--data_path /root/LJSpeech-1.1/
|
|
--batch_size 32
|
|
--dataset ljspeech
|
|
--use_cuda True
|
|
''',
|
|
formatter_class=RawTextHelpFormatter
|
|
)
|
|
parser.add_argument('--model_path',
|
|
type=str,
|
|
required=True,
|
|
help='Path to Tacotron/Tacotron2 model file ')
|
|
parser.add_argument(
|
|
'--config_path',
|
|
type=str,
|
|
required=True,
|
|
help='Path to Tacotron/Tacotron2 config file.',
|
|
)
|
|
parser.add_argument('--dataset',
|
|
type=str,
|
|
default='',
|
|
required=True,
|
|
help='Target dataset processor name from TTS.tts.dataset.preprocess.')
|
|
|
|
parser.add_argument(
|
|
'--dataset_metafile',
|
|
type=str,
|
|
default='',
|
|
required=True,
|
|
help='Dataset metafile inclusing file paths with transcripts.')
|
|
parser.add_argument(
|
|
'--data_path',
|
|
type=str,
|
|
default='',
|
|
help='Defines the data path. It overwrites config.json.')
|
|
parser.add_argument('--use_cuda',
|
|
type=bool,
|
|
default=False,
|
|
help="enable/disable cuda.")
|
|
|
|
parser.add_argument(
|
|
'--batch_size',
|
|
default=16,
|
|
type=int,
|
|
help='Batch size for the model. Use batch_size=1 if you have no CUDA.')
|
|
args = parser.parse_args()
|
|
|
|
C = load_config(args.config_path)
|
|
ap = AudioProcessor(**C.audio)
|
|
|
|
# if the vocabulary was passed, replace the default
|
|
if 'characters' in C.keys():
|
|
symbols, phonemes = make_symbols(**C.characters)
|
|
|
|
# load the model
|
|
num_chars = len(phonemes) if C.use_phonemes else len(symbols)
|
|
# TODO: handle multi-speaker
|
|
model = setup_model(num_chars, num_speakers=0, c=C)
|
|
model, _ = load_checkpoint(model, args.model_path, None, args.use_cuda)
|
|
model.eval()
|
|
|
|
# data loader
|
|
preprocessor = importlib.import_module('TTS.tts.datasets.preprocess')
|
|
preprocessor = getattr(preprocessor, args.dataset)
|
|
meta_data = preprocessor(args.data_path, args.dataset_metafile)
|
|
dataset = MyDataset(model.decoder.r,
|
|
C.text_cleaner,
|
|
compute_linear_spec=False,
|
|
ap=ap,
|
|
meta_data=meta_data,
|
|
tp=C.characters if 'characters' in C.keys() else None,
|
|
add_blank=C['add_blank'] if 'add_blank' in C.keys() else False,
|
|
use_phonemes=C.use_phonemes,
|
|
phoneme_cache_path=C.phoneme_cache_path,
|
|
phoneme_language=C.phoneme_language,
|
|
enable_eos_bos=C.enable_eos_bos_chars)
|
|
|
|
dataset.sort_items()
|
|
loader = DataLoader(dataset,
|
|
batch_size=args.batch_size,
|
|
num_workers=4,
|
|
collate_fn=dataset.collate_fn,
|
|
shuffle=False,
|
|
drop_last=False)
|
|
|
|
# compute attentions
|
|
file_paths = []
|
|
with torch.no_grad():
|
|
for data in tqdm(loader):
|
|
# setup input data
|
|
text_input = data[0]
|
|
text_lengths = data[1]
|
|
linear_input = data[3]
|
|
mel_input = data[4]
|
|
mel_lengths = data[5]
|
|
stop_targets = data[6]
|
|
item_idxs = data[7]
|
|
|
|
# dispatch data to GPU
|
|
if args.use_cuda:
|
|
text_input = text_input.cuda()
|
|
text_lengths = text_lengths.cuda()
|
|
mel_input = mel_input.cuda()
|
|
mel_lengths = mel_lengths.cuda()
|
|
|
|
mel_outputs, postnet_outputs, alignments, stop_tokens = model.forward(
|
|
text_input, text_lengths, mel_input)
|
|
|
|
alignments = alignments.detach()
|
|
for idx, alignment in enumerate(alignments):
|
|
item_idx = item_idxs[idx]
|
|
# interpolate if r > 1
|
|
alignment = torch.nn.functional.interpolate(
|
|
alignment.transpose(0, 1).unsqueeze(0),
|
|
size=None,
|
|
scale_factor=model.decoder.r,
|
|
mode='nearest',
|
|
align_corners=None,
|
|
recompute_scale_factor=None).squeeze(0).transpose(0, 1)
|
|
# remove paddings
|
|
alignment = alignment[:mel_lengths[idx], :text_lengths[idx]].cpu().numpy()
|
|
# set file paths
|
|
wav_file_name = os.path.basename(item_idx)
|
|
align_file_name = os.path.splitext(wav_file_name)[0] + '.npy'
|
|
file_path = item_idx.replace(wav_file_name, align_file_name)
|
|
# save output
|
|
file_paths.append([item_idx, file_path])
|
|
np.save(file_path, alignment)
|
|
|
|
# ourput metafile
|
|
metafile = os.path.join(args.data_path, "metadata_attn_mask.txt")
|
|
|
|
with open(metafile, "w") as f:
|
|
for p in file_paths:
|
|
f.write(f"{p[0]}|{p[1]}\n")
|
|
print(f" >> Metafile created: {metafile}")
|