mirror of https://github.com/coqui-ai/TTS.git
675 lines
29 KiB
Python
675 lines
29 KiB
Python
#!/usr/bin/env python3
|
|
"""Trains Tacotron based TTS models."""
|
|
|
|
import os
|
|
import sys
|
|
import time
|
|
import traceback
|
|
from random import randrange
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
from TTS.utils.arguments import parse_arguments, process_args
|
|
from TTS.tts.datasets.preprocess import load_meta_data
|
|
from TTS.tts.datasets.TTSDataset import MyDataset
|
|
from TTS.tts.layers.losses import TacotronLoss
|
|
from TTS.tts.utils.generic_utils import setup_model
|
|
from TTS.tts.utils.io import save_best_model, save_checkpoint
|
|
from TTS.tts.utils.measures import alignment_diagonal_score
|
|
from TTS.tts.utils.speakers import parse_speakers
|
|
from TTS.tts.utils.synthesis import synthesis
|
|
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
|
|
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
|
|
from TTS.utils.audio import AudioProcessor
|
|
from TTS.utils.distribute import (DistributedSampler, apply_gradient_allreduce,
|
|
init_distributed, reduce_tensor)
|
|
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
|
|
remove_experiment_folder, set_init_dict)
|
|
from TTS.utils.radam import RAdam
|
|
from TTS.utils.training import (NoamLR, adam_weight_decay, check_update,
|
|
gradual_training_scheduler, set_weight_decay,
|
|
setup_torch_training_env)
|
|
|
|
use_cuda, num_gpus = setup_torch_training_env(True, False)
|
|
|
|
|
|
def setup_loader(ap, r, is_val=False, verbose=False, dataset=None):
|
|
if is_val and not c.run_eval:
|
|
loader = None
|
|
else:
|
|
if dataset is None:
|
|
dataset = MyDataset(
|
|
r,
|
|
c.text_cleaner,
|
|
compute_linear_spec=c.model.lower() == 'tacotron',
|
|
meta_data=meta_data_eval if is_val else meta_data_train,
|
|
ap=ap,
|
|
tp=c.characters if 'characters' in c.keys() else None,
|
|
add_blank=c['add_blank'] if 'add_blank' in c.keys() else False,
|
|
batch_group_size=0 if is_val else c.batch_group_size *
|
|
c.batch_size,
|
|
min_seq_len=c.min_seq_len,
|
|
max_seq_len=c.max_seq_len,
|
|
phoneme_cache_path=c.phoneme_cache_path,
|
|
use_phonemes=c.use_phonemes,
|
|
phoneme_language=c.phoneme_language,
|
|
enable_eos_bos=c.enable_eos_bos_chars,
|
|
verbose=verbose,
|
|
speaker_mapping=(speaker_mapping if (
|
|
c.use_speaker_embedding
|
|
and c.use_external_speaker_embedding_file
|
|
) else None)
|
|
)
|
|
|
|
if c.use_phonemes and c.compute_input_seq_cache:
|
|
# precompute phonemes to have a better estimate of sequence lengths.
|
|
dataset.compute_input_seq(c.num_loader_workers)
|
|
dataset.sort_items()
|
|
|
|
sampler = DistributedSampler(dataset) if num_gpus > 1 else None
|
|
loader = DataLoader(
|
|
dataset,
|
|
batch_size=c.eval_batch_size if is_val else c.batch_size,
|
|
shuffle=False,
|
|
collate_fn=dataset.collate_fn,
|
|
drop_last=False,
|
|
sampler=sampler,
|
|
num_workers=c.num_val_loader_workers
|
|
if is_val else c.num_loader_workers,
|
|
pin_memory=False)
|
|
return loader
|
|
|
|
def format_data(data):
|
|
# setup input data
|
|
text_input = data[0]
|
|
text_lengths = data[1]
|
|
speaker_names = data[2]
|
|
linear_input = data[3] if c.model.lower() in ["tacotron"] else None
|
|
mel_input = data[4]
|
|
mel_lengths = data[5]
|
|
stop_targets = data[6]
|
|
max_text_length = torch.max(text_lengths.float())
|
|
max_spec_length = torch.max(mel_lengths.float())
|
|
|
|
if c.use_speaker_embedding:
|
|
if c.use_external_speaker_embedding_file:
|
|
speaker_embeddings = data[8]
|
|
speaker_ids = None
|
|
else:
|
|
speaker_ids = [
|
|
speaker_mapping[speaker_name] for speaker_name in speaker_names
|
|
]
|
|
speaker_ids = torch.LongTensor(speaker_ids)
|
|
speaker_embeddings = None
|
|
else:
|
|
speaker_embeddings = None
|
|
speaker_ids = None
|
|
|
|
|
|
# set stop targets view, we predict a single stop token per iteration.
|
|
stop_targets = stop_targets.view(text_input.shape[0],
|
|
stop_targets.size(1) // c.r, -1)
|
|
stop_targets = (stop_targets.sum(2) >
|
|
0.0).unsqueeze(2).float().squeeze(2)
|
|
|
|
# dispatch data to GPU
|
|
if use_cuda:
|
|
text_input = text_input.cuda(non_blocking=True)
|
|
text_lengths = text_lengths.cuda(non_blocking=True)
|
|
mel_input = mel_input.cuda(non_blocking=True)
|
|
mel_lengths = mel_lengths.cuda(non_blocking=True)
|
|
linear_input = linear_input.cuda(non_blocking=True) if c.model in ["Tacotron"] else None
|
|
stop_targets = stop_targets.cuda(non_blocking=True)
|
|
if speaker_ids is not None:
|
|
speaker_ids = speaker_ids.cuda(non_blocking=True)
|
|
if speaker_embeddings is not None:
|
|
speaker_embeddings = speaker_embeddings.cuda(non_blocking=True)
|
|
|
|
return text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, max_text_length, max_spec_length
|
|
|
|
|
|
def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler,
|
|
ap, global_step, epoch, scaler, scaler_st):
|
|
model.train()
|
|
epoch_time = 0
|
|
keep_avg = KeepAverage()
|
|
if use_cuda:
|
|
batch_n_iter = int(
|
|
len(data_loader.dataset) / (c.batch_size * num_gpus))
|
|
else:
|
|
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
|
|
end_time = time.time()
|
|
c_logger.print_train_start()
|
|
for num_iter, data in enumerate(data_loader):
|
|
start_time = time.time()
|
|
|
|
# format data
|
|
text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, max_text_length, max_spec_length = format_data(data)
|
|
loader_time = time.time() - end_time
|
|
|
|
global_step += 1
|
|
|
|
# setup lr
|
|
if c.noam_schedule:
|
|
scheduler.step()
|
|
|
|
optimizer.zero_grad()
|
|
if optimizer_st:
|
|
optimizer_st.zero_grad()
|
|
|
|
with torch.cuda.amp.autocast(enabled=c.mixed_precision):
|
|
# forward pass model
|
|
if c.bidirectional_decoder or c.double_decoder_consistency:
|
|
decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model(
|
|
text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
|
|
else:
|
|
decoder_output, postnet_output, alignments, stop_tokens = model(
|
|
text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
|
|
decoder_backward_output = None
|
|
alignments_backward = None
|
|
|
|
# set the [alignment] lengths wrt reduction factor for guided attention
|
|
if mel_lengths.max() % model.decoder.r != 0:
|
|
alignment_lengths = (mel_lengths + (model.decoder.r - (mel_lengths.max() % model.decoder.r))) // model.decoder.r
|
|
else:
|
|
alignment_lengths = mel_lengths // model.decoder.r
|
|
|
|
# compute loss
|
|
loss_dict = criterion(postnet_output, decoder_output, mel_input,
|
|
linear_input, stop_tokens, stop_targets,
|
|
mel_lengths, decoder_backward_output,
|
|
alignments, alignment_lengths,
|
|
alignments_backward, text_lengths)
|
|
|
|
# check nan loss
|
|
if torch.isnan(loss_dict['loss']).any():
|
|
raise RuntimeError(f'Detected NaN loss at step {global_step}.')
|
|
|
|
# optimizer step
|
|
if c.mixed_precision:
|
|
# model optimizer step in mixed precision mode
|
|
scaler.scale(loss_dict['loss']).backward()
|
|
scaler.unscale_(optimizer)
|
|
optimizer, current_lr = adam_weight_decay(optimizer)
|
|
grad_norm, _ = check_update(model, c.grad_clip, ignore_stopnet=True)
|
|
scaler.step(optimizer)
|
|
scaler.update()
|
|
|
|
# stopnet optimizer step
|
|
if c.separate_stopnet:
|
|
scaler_st.scale(loss_dict['stopnet_loss']).backward()
|
|
scaler.unscale_(optimizer_st)
|
|
optimizer_st, _ = adam_weight_decay(optimizer_st)
|
|
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
|
|
scaler_st.step(optimizer)
|
|
scaler_st.update()
|
|
else:
|
|
grad_norm_st = 0
|
|
else:
|
|
# main model optimizer step
|
|
loss_dict['loss'].backward()
|
|
optimizer, current_lr = adam_weight_decay(optimizer)
|
|
grad_norm, _ = check_update(model, c.grad_clip, ignore_stopnet=True)
|
|
optimizer.step()
|
|
|
|
# stopnet optimizer step
|
|
if c.separate_stopnet:
|
|
loss_dict['stopnet_loss'].backward()
|
|
optimizer_st, _ = adam_weight_decay(optimizer_st)
|
|
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
|
|
optimizer_st.step()
|
|
else:
|
|
grad_norm_st = 0
|
|
|
|
# compute alignment error (the lower the better )
|
|
align_error = 1 - alignment_diagonal_score(alignments)
|
|
loss_dict['align_error'] = align_error
|
|
|
|
step_time = time.time() - start_time
|
|
epoch_time += step_time
|
|
|
|
# aggregate losses from processes
|
|
if num_gpus > 1:
|
|
loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus)
|
|
loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus)
|
|
loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus)
|
|
loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus) if c.stopnet else loss_dict['stopnet_loss']
|
|
|
|
# detach loss values
|
|
loss_dict_new = dict()
|
|
for key, value in loss_dict.items():
|
|
if isinstance(value, (int, float)):
|
|
loss_dict_new[key] = value
|
|
else:
|
|
loss_dict_new[key] = value.item()
|
|
loss_dict = loss_dict_new
|
|
|
|
# update avg stats
|
|
update_train_values = dict()
|
|
for key, value in loss_dict.items():
|
|
update_train_values['avg_' + key] = value
|
|
update_train_values['avg_loader_time'] = loader_time
|
|
update_train_values['avg_step_time'] = step_time
|
|
keep_avg.update_values(update_train_values)
|
|
|
|
# print training progress
|
|
if global_step % c.print_step == 0:
|
|
log_dict = {
|
|
"max_spec_length": [max_spec_length, 1], # value, precision
|
|
"max_text_length": [max_text_length, 1],
|
|
"step_time": [step_time, 4],
|
|
"loader_time": [loader_time, 2],
|
|
"current_lr": current_lr,
|
|
}
|
|
c_logger.print_train_step(batch_n_iter, num_iter, global_step,
|
|
log_dict, loss_dict, keep_avg.avg_values)
|
|
|
|
if args.rank == 0:
|
|
# Plot Training Iter Stats
|
|
# reduce TB load
|
|
if global_step % c.tb_plot_step == 0:
|
|
iter_stats = {
|
|
"lr": current_lr,
|
|
"grad_norm": grad_norm,
|
|
"grad_norm_st": grad_norm_st,
|
|
"step_time": step_time
|
|
}
|
|
iter_stats.update(loss_dict)
|
|
tb_logger.tb_train_iter_stats(global_step, iter_stats)
|
|
|
|
if global_step % c.save_step == 0:
|
|
if c.checkpoint:
|
|
# save model
|
|
save_checkpoint(model, optimizer, global_step, epoch, model.decoder.r, OUT_PATH,
|
|
optimizer_st=optimizer_st,
|
|
model_loss=loss_dict['postnet_loss'],
|
|
characters=model_characters,
|
|
scaler=scaler.state_dict() if c.mixed_precision else None)
|
|
|
|
# Diagnostic visualizations
|
|
const_spec = postnet_output[0].data.cpu().numpy()
|
|
gt_spec = linear_input[0].data.cpu().numpy() if c.model in [
|
|
"Tacotron", "TacotronGST"
|
|
] else mel_input[0].data.cpu().numpy()
|
|
align_img = alignments[0].data.cpu().numpy()
|
|
|
|
figures = {
|
|
"prediction": plot_spectrogram(const_spec, ap, output_fig=False),
|
|
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
|
|
"alignment": plot_alignment(align_img, output_fig=False),
|
|
}
|
|
|
|
if c.bidirectional_decoder or c.double_decoder_consistency:
|
|
figures["alignment_backward"] = plot_alignment(alignments_backward[0].data.cpu().numpy(), output_fig=False)
|
|
|
|
tb_logger.tb_train_figures(global_step, figures)
|
|
|
|
# Sample audio
|
|
if c.model in ["Tacotron", "TacotronGST"]:
|
|
train_audio = ap.inv_spectrogram(const_spec.T)
|
|
else:
|
|
train_audio = ap.inv_melspectrogram(const_spec.T)
|
|
tb_logger.tb_train_audios(global_step,
|
|
{'TrainAudio': train_audio},
|
|
c.audio["sample_rate"])
|
|
end_time = time.time()
|
|
|
|
# print epoch stats
|
|
c_logger.print_train_epoch_end(global_step, epoch, epoch_time, keep_avg)
|
|
|
|
# Plot Epoch Stats
|
|
if args.rank == 0:
|
|
epoch_stats = {"epoch_time": epoch_time}
|
|
epoch_stats.update(keep_avg.avg_values)
|
|
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
|
|
if c.tb_model_param_stats:
|
|
tb_logger.tb_model_weights(model, global_step)
|
|
return keep_avg.avg_values, global_step
|
|
|
|
|
|
@torch.no_grad()
|
|
def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|
model.eval()
|
|
epoch_time = 0
|
|
keep_avg = KeepAverage()
|
|
c_logger.print_eval_start()
|
|
if data_loader is not None:
|
|
for num_iter, data in enumerate(data_loader):
|
|
start_time = time.time()
|
|
|
|
# format data
|
|
text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, _, _ = format_data(data)
|
|
assert mel_input.shape[1] % model.decoder.r == 0
|
|
|
|
# forward pass model
|
|
if c.bidirectional_decoder or c.double_decoder_consistency:
|
|
decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model(
|
|
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
|
|
else:
|
|
decoder_output, postnet_output, alignments, stop_tokens = model(
|
|
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
|
|
decoder_backward_output = None
|
|
alignments_backward = None
|
|
|
|
# set the alignment lengths wrt reduction factor for guided attention
|
|
if mel_lengths.max() % model.decoder.r != 0:
|
|
alignment_lengths = (mel_lengths + (model.decoder.r - (mel_lengths.max() % model.decoder.r))) // model.decoder.r
|
|
else:
|
|
alignment_lengths = mel_lengths // model.decoder.r
|
|
|
|
# compute loss
|
|
loss_dict = criterion(postnet_output, decoder_output, mel_input,
|
|
linear_input, stop_tokens, stop_targets,
|
|
mel_lengths, decoder_backward_output,
|
|
alignments, alignment_lengths, alignments_backward,
|
|
text_lengths)
|
|
|
|
# step time
|
|
step_time = time.time() - start_time
|
|
epoch_time += step_time
|
|
|
|
# compute alignment score
|
|
align_error = 1 - alignment_diagonal_score(alignments)
|
|
loss_dict['align_error'] = align_error
|
|
|
|
# aggregate losses from processes
|
|
if num_gpus > 1:
|
|
loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus)
|
|
loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus)
|
|
if c.stopnet:
|
|
loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus)
|
|
|
|
# detach loss values
|
|
loss_dict_new = dict()
|
|
for key, value in loss_dict.items():
|
|
if isinstance(value, (int, float)):
|
|
loss_dict_new[key] = value
|
|
else:
|
|
loss_dict_new[key] = value.item()
|
|
loss_dict = loss_dict_new
|
|
|
|
# update avg stats
|
|
update_train_values = dict()
|
|
for key, value in loss_dict.items():
|
|
update_train_values['avg_' + key] = value
|
|
keep_avg.update_values(update_train_values)
|
|
|
|
if c.print_eval:
|
|
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)
|
|
|
|
if args.rank == 0:
|
|
# Diagnostic visualizations
|
|
idx = np.random.randint(mel_input.shape[0])
|
|
const_spec = postnet_output[idx].data.cpu().numpy()
|
|
gt_spec = linear_input[idx].data.cpu().numpy() if c.model in [
|
|
"Tacotron", "TacotronGST"
|
|
] else mel_input[idx].data.cpu().numpy()
|
|
align_img = alignments[idx].data.cpu().numpy()
|
|
|
|
eval_figures = {
|
|
"prediction": plot_spectrogram(const_spec, ap, output_fig=False),
|
|
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
|
|
"alignment": plot_alignment(align_img, output_fig=False)
|
|
}
|
|
|
|
# Sample audio
|
|
if c.model in ["Tacotron", "TacotronGST"]:
|
|
eval_audio = ap.inv_spectrogram(const_spec.T)
|
|
else:
|
|
eval_audio = ap.inv_melspectrogram(const_spec.T)
|
|
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio},
|
|
c.audio["sample_rate"])
|
|
|
|
# Plot Validation Stats
|
|
|
|
if c.bidirectional_decoder or c.double_decoder_consistency:
|
|
align_b_img = alignments_backward[idx].data.cpu().numpy()
|
|
eval_figures['alignment2'] = plot_alignment(align_b_img, output_fig=False)
|
|
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
|
|
tb_logger.tb_eval_figures(global_step, eval_figures)
|
|
|
|
if args.rank == 0 and epoch > c.test_delay_epochs:
|
|
if c.test_sentences_file is None:
|
|
test_sentences = [
|
|
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
|
|
"Be a voice, not an echo.",
|
|
"I'm sorry Dave. I'm afraid I can't do that.",
|
|
"This cake is great. It's so delicious and moist.",
|
|
"Prior to November 22, 1963."
|
|
]
|
|
else:
|
|
with open(c.test_sentences_file, "r") as f:
|
|
test_sentences = [s.strip() for s in f.readlines()]
|
|
|
|
# test sentences
|
|
test_audios = {}
|
|
test_figures = {}
|
|
print(" | > Synthesizing test sentences")
|
|
speaker_id = 0 if c.use_speaker_embedding else None
|
|
speaker_embedding = speaker_mapping[list(speaker_mapping.keys())[randrange(len(speaker_mapping)-1)]]['embedding'] if c.use_external_speaker_embedding_file and c.use_speaker_embedding else None
|
|
style_wav = c.get("gst_style_input")
|
|
if style_wav is None and c.use_gst:
|
|
# inicialize GST with zero dict.
|
|
style_wav = {}
|
|
print("WARNING: You don't provided a gst style wav, for this reason we use a zero tensor!")
|
|
for i in range(c.gst['gst_style_tokens']):
|
|
style_wav[str(i)] = 0
|
|
style_wav = c.get("gst_style_input")
|
|
for idx, test_sentence in enumerate(test_sentences):
|
|
try:
|
|
wav, alignment, decoder_output, postnet_output, stop_tokens, _ = synthesis(
|
|
model,
|
|
test_sentence,
|
|
c,
|
|
use_cuda,
|
|
ap,
|
|
speaker_id=speaker_id,
|
|
speaker_embedding=speaker_embedding,
|
|
style_wav=style_wav,
|
|
truncated=False,
|
|
enable_eos_bos_chars=c.enable_eos_bos_chars, #pylint: disable=unused-argument
|
|
use_griffin_lim=True,
|
|
do_trim_silence=False)
|
|
|
|
file_path = os.path.join(AUDIO_PATH, str(global_step))
|
|
os.makedirs(file_path, exist_ok=True)
|
|
file_path = os.path.join(file_path,
|
|
"TestSentence_{}.wav".format(idx))
|
|
ap.save_wav(wav, file_path)
|
|
test_audios['{}-audio'.format(idx)] = wav
|
|
test_figures['{}-prediction'.format(idx)] = plot_spectrogram(
|
|
postnet_output, ap, output_fig=False)
|
|
test_figures['{}-alignment'.format(idx)] = plot_alignment(
|
|
alignment, output_fig=False)
|
|
except: #pylint: disable=bare-except
|
|
print(" !! Error creating Test Sentence -", idx)
|
|
traceback.print_exc()
|
|
tb_logger.tb_test_audios(global_step, test_audios,
|
|
c.audio['sample_rate'])
|
|
tb_logger.tb_test_figures(global_step, test_figures)
|
|
return keep_avg.avg_values
|
|
|
|
|
|
def main(args): # pylint: disable=redefined-outer-name
|
|
# pylint: disable=global-variable-undefined
|
|
global meta_data_train, meta_data_eval, speaker_mapping, symbols, phonemes, model_characters
|
|
# Audio processor
|
|
ap = AudioProcessor(**c.audio)
|
|
|
|
# setup custom characters if set in config file.
|
|
if 'characters' in c.keys():
|
|
symbols, phonemes = make_symbols(**c.characters)
|
|
|
|
# DISTRUBUTED
|
|
if num_gpus > 1:
|
|
init_distributed(args.rank, num_gpus, args.group_id,
|
|
c.distributed["backend"], c.distributed["url"])
|
|
num_chars = len(phonemes) if c.use_phonemes else len(symbols)
|
|
model_characters = phonemes if c.use_phonemes else symbols
|
|
|
|
# load data instances
|
|
meta_data_train, meta_data_eval = load_meta_data(c.datasets)
|
|
|
|
# set the portion of the data used for training
|
|
if 'train_portion' in c.keys():
|
|
meta_data_train = meta_data_train[:int(len(meta_data_train) * c.train_portion)]
|
|
if 'eval_portion' in c.keys():
|
|
meta_data_eval = meta_data_eval[:int(len(meta_data_eval) * c.eval_portion)]
|
|
|
|
# parse speakers
|
|
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(c, args, meta_data_train, OUT_PATH)
|
|
|
|
model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim)
|
|
|
|
# scalers for mixed precision training
|
|
scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None
|
|
scaler_st = torch.cuda.amp.GradScaler() if c.mixed_precision and c.separate_stopnet else None
|
|
|
|
params = set_weight_decay(model, c.wd)
|
|
optimizer = RAdam(params, lr=c.lr, weight_decay=0)
|
|
if c.stopnet and c.separate_stopnet:
|
|
optimizer_st = RAdam(model.decoder.stopnet.parameters(),
|
|
lr=c.lr,
|
|
weight_decay=0)
|
|
else:
|
|
optimizer_st = None
|
|
|
|
# setup criterion
|
|
criterion = TacotronLoss(c, stopnet_pos_weight=c.stopnet_pos_weight, ga_sigma=0.4)
|
|
if args.restore_path:
|
|
print(f" > Restoring from {os.path.basename(args.restore_path)}...")
|
|
checkpoint = torch.load(args.restore_path, map_location='cpu')
|
|
try:
|
|
print(" > Restoring Model...")
|
|
model.load_state_dict(checkpoint['model'])
|
|
# optimizer restore
|
|
print(" > Restoring Optimizer...")
|
|
optimizer.load_state_dict(checkpoint['optimizer'])
|
|
if "scaler" in checkpoint and c.mixed_precision:
|
|
print(" > Restoring AMP Scaler...")
|
|
scaler.load_state_dict(checkpoint["scaler"])
|
|
if c.reinit_layers:
|
|
raise RuntimeError
|
|
except (KeyError, RuntimeError):
|
|
print(" > Partial model initialization...")
|
|
model_dict = model.state_dict()
|
|
model_dict = set_init_dict(model_dict, checkpoint['model'], c)
|
|
# torch.save(model_dict, os.path.join(OUT_PATH, 'state_dict.pt'))
|
|
# print("State Dict saved for debug in: ", os.path.join(OUT_PATH, 'state_dict.pt'))
|
|
model.load_state_dict(model_dict)
|
|
del model_dict
|
|
|
|
for group in optimizer.param_groups:
|
|
group['lr'] = c.lr
|
|
print(" > Model restored from step %d" % checkpoint['step'],
|
|
flush=True)
|
|
args.restore_step = checkpoint['step']
|
|
else:
|
|
args.restore_step = 0
|
|
|
|
if use_cuda:
|
|
model.cuda()
|
|
criterion.cuda()
|
|
|
|
# DISTRUBUTED
|
|
if num_gpus > 1:
|
|
model = apply_gradient_allreduce(model)
|
|
|
|
if c.noam_schedule:
|
|
scheduler = NoamLR(optimizer,
|
|
warmup_steps=c.warmup_steps,
|
|
last_epoch=args.restore_step - 1)
|
|
else:
|
|
scheduler = None
|
|
|
|
num_params = count_parameters(model)
|
|
print("\n > Model has {} parameters".format(num_params), flush=True)
|
|
|
|
if args.restore_step == 0 or not args.best_path:
|
|
best_loss = float('inf')
|
|
print(" > Starting with inf best loss.")
|
|
else:
|
|
print(" > Restoring best loss from "
|
|
f"{os.path.basename(args.best_path)} ...")
|
|
best_loss = torch.load(args.best_path,
|
|
map_location='cpu')['model_loss']
|
|
print(f" > Starting with loaded last best loss {best_loss}.")
|
|
keep_all_best = c.get('keep_all_best', False)
|
|
keep_after = c.get('keep_after', 10000) # void if keep_all_best False
|
|
|
|
# define data loaders
|
|
train_loader = setup_loader(ap,
|
|
model.decoder.r,
|
|
is_val=False,
|
|
verbose=True)
|
|
eval_loader = setup_loader(ap, model.decoder.r, is_val=True)
|
|
|
|
global_step = args.restore_step
|
|
for epoch in range(0, c.epochs):
|
|
c_logger.print_epoch_start(epoch, c.epochs)
|
|
# set gradual training
|
|
if c.gradual_training is not None:
|
|
r, c.batch_size = gradual_training_scheduler(global_step, c)
|
|
c.r = r
|
|
model.decoder.set_r(r)
|
|
if c.bidirectional_decoder:
|
|
model.decoder_backward.set_r(r)
|
|
train_loader.dataset.outputs_per_step = r
|
|
eval_loader.dataset.outputs_per_step = r
|
|
train_loader = setup_loader(ap,
|
|
model.decoder.r,
|
|
is_val=False,
|
|
dataset=train_loader.dataset)
|
|
eval_loader = setup_loader(ap,
|
|
model.decoder.r,
|
|
is_val=True,
|
|
dataset=eval_loader.dataset)
|
|
print("\n > Number of output frames:", model.decoder.r)
|
|
# train one epoch
|
|
train_avg_loss_dict, global_step = train(train_loader, model,
|
|
criterion, optimizer,
|
|
optimizer_st, scheduler, ap,
|
|
global_step, epoch, scaler,
|
|
scaler_st)
|
|
# eval one epoch
|
|
eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap,
|
|
global_step, epoch)
|
|
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
|
|
target_loss = train_avg_loss_dict['avg_postnet_loss']
|
|
if c.run_eval:
|
|
target_loss = eval_avg_loss_dict['avg_postnet_loss']
|
|
best_loss = save_best_model(
|
|
target_loss,
|
|
best_loss,
|
|
model,
|
|
optimizer,
|
|
global_step,
|
|
epoch,
|
|
c.r,
|
|
OUT_PATH,
|
|
model_characters,
|
|
keep_all_best=keep_all_best,
|
|
keep_after=keep_after,
|
|
scaler=scaler.state_dict() if c.mixed_precision else None
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments(sys.argv)
|
|
c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = process_args(
|
|
args, model_class='tts')
|
|
|
|
try:
|
|
main(args)
|
|
except KeyboardInterrupt:
|
|
remove_experiment_folder(OUT_PATH)
|
|
try:
|
|
sys.exit(0)
|
|
except SystemExit:
|
|
os._exit(0) # pylint: disable=protected-access
|
|
except Exception: # pylint: disable=broad-except
|
|
remove_experiment_folder(OUT_PATH)
|
|
traceback.print_exc()
|
|
sys.exit(1)
|