coqui-tts/TTS/tts/layers/losses.py

557 lines
23 KiB
Python

import math
import numpy as np
import torch
from torch import nn
from torch.nn import functional
from TTS.tts.utils.generic_utils import sequence_mask
from TTS.tts.utils.ssim import ssim
# pylint: disable=abstract-method
# relates https://github.com/pytorch/pytorch/issues/42305
class L1LossMasked(nn.Module):
def __init__(self, seq_len_norm):
super().__init__()
self.seq_len_norm = seq_len_norm
def forward(self, x, target, length):
"""
Args:
x: A Variable containing a FloatTensor of size
(batch, max_len, dim) which contains the
unnormalized probability for each class.
target: A Variable containing a LongTensor of size
(batch, max_len, dim) which contains the index of the true
class for each corresponding step.
length: A Variable containing a LongTensor of size (batch,)
which contains the length of each data in a batch.
Shapes:
x: B x T X D
target: B x T x D
length: B
Returns:
loss: An average loss value in range [0, 1] masked by the length.
"""
# mask: (batch, max_len, 1)
target.requires_grad = False
mask = sequence_mask(sequence_length=length,
max_len=target.size(1)).unsqueeze(2).float()
if self.seq_len_norm:
norm_w = mask / mask.sum(dim=1, keepdim=True)
out_weights = norm_w.div(target.shape[0] * target.shape[2])
mask = mask.expand_as(x)
loss = functional.l1_loss(x * mask,
target * mask,
reduction='none')
loss = loss.mul(out_weights.to(loss.device)).sum()
else:
mask = mask.expand_as(x)
loss = functional.l1_loss(x * mask, target * mask, reduction='sum')
loss = loss / mask.sum()
return loss
class MSELossMasked(nn.Module):
def __init__(self, seq_len_norm):
super(MSELossMasked, self).__init__()
self.seq_len_norm = seq_len_norm
def forward(self, x, target, length):
"""
Args:
x: A Variable containing a FloatTensor of size
(batch, max_len, dim) which contains the
unnormalized probability for each class.
target: A Variable containing a LongTensor of size
(batch, max_len, dim) which contains the index of the true
class for each corresponding step.
length: A Variable containing a LongTensor of size (batch,)
which contains the length of each data in a batch.
Shapes:
x: B x T X D
target: B x T x D
length: B
Returns:
loss: An average loss value in range [0, 1] masked by the length.
"""
# mask: (batch, max_len, 1)
target.requires_grad = False
mask = sequence_mask(sequence_length=length,
max_len=target.size(1)).unsqueeze(2).float()
if self.seq_len_norm:
norm_w = mask / mask.sum(dim=1, keepdim=True)
out_weights = norm_w.div(target.shape[0] * target.shape[2])
mask = mask.expand_as(x)
loss = functional.mse_loss(x * mask,
target * mask,
reduction='none')
loss = loss.mul(out_weights.to(loss.device)).sum()
else:
mask = mask.expand_as(x)
loss = functional.mse_loss(x * mask,
target * mask,
reduction='sum')
loss = loss / mask.sum()
return loss
class SSIMLoss(torch.nn.Module):
"""SSIM loss as explained here https://en.wikipedia.org/wiki/Structural_similarity"""
def __init__(self):
super().__init__()
self.loss_func = ssim
def forward(self, y_hat, y, length=None):
"""
Args:
y_hat (tensor): model prediction values.
y (tensor): target values.
length (tensor): length of each sample in a batch.
Shapes:
y_hat: B x T X D
y: B x T x D
length: B
Returns:
loss: An average loss value in range [0, 1] masked by the length.
"""
if length is not None:
m = sequence_mask(sequence_length=length,
max_len=y.size(1)).unsqueeze(2).float().to(
y_hat.device)
y_hat, y = y_hat * m, y * m
return 1 - self.loss_func(y_hat.unsqueeze(1), y.unsqueeze(1))
class AttentionEntropyLoss(nn.Module):
# pylint: disable=R0201
def forward(self, align):
"""
Forces attention to be more decisive by penalizing
soft attention weights
TODO: arguments
TODO: unit_test
"""
entropy = torch.distributions.Categorical(probs=align).entropy()
loss = (entropy / np.log(align.shape[1])).mean()
return loss
class BCELossMasked(nn.Module):
def __init__(self, pos_weight):
super(BCELossMasked, self).__init__()
self.pos_weight = pos_weight
def forward(self, x, target, length):
"""
Args:
x: A Variable containing a FloatTensor of size
(batch, max_len) which contains the
unnormalized probability for each class.
target: A Variable containing a LongTensor of size
(batch, max_len) which contains the index of the true
class for each corresponding step.
length: A Variable containing a LongTensor of size (batch,)
which contains the length of each data in a batch.
Shapes:
x: B x T
target: B x T
length: B
Returns:
loss: An average loss value in range [0, 1] masked by the length.
"""
# mask: (batch, max_len, 1)
target.requires_grad = False
if length is not None:
mask = sequence_mask(sequence_length=length,
max_len=target.size(1)).float()
x = x * mask
target = target * mask
num_items = mask.sum()
else:
num_items = torch.numel(x)
loss = functional.binary_cross_entropy_with_logits(
x,
target,
pos_weight=self.pos_weight,
reduction='sum')
loss = loss / num_items
return loss
class DifferentailSpectralLoss(nn.Module):
"""Differential Spectral Loss
https://arxiv.org/ftp/arxiv/papers/1909/1909.10302.pdf"""
def __init__(self, loss_func):
super().__init__()
self.loss_func = loss_func
def forward(self, x, target, length=None):
"""
Shapes:
x: B x T
target: B x T
length: B
Returns:
loss: An average loss value in range [0, 1] masked by the length.
"""
x_diff = x[:, 1:] - x[:, :-1]
target_diff = target[:, 1:] - target[:, :-1]
if length is None:
return self.loss_func(x_diff, target_diff)
return self.loss_func(x_diff, target_diff, length-1)
class GuidedAttentionLoss(torch.nn.Module):
def __init__(self, sigma=0.4):
super(GuidedAttentionLoss, self).__init__()
self.sigma = sigma
def _make_ga_masks(self, ilens, olens):
B = len(ilens)
max_ilen = max(ilens)
max_olen = max(olens)
ga_masks = torch.zeros((B, max_olen, max_ilen))
for idx, (ilen, olen) in enumerate(zip(ilens, olens)):
ga_masks[idx, :olen, :ilen] = self._make_ga_mask(
ilen, olen, self.sigma)
return ga_masks
def forward(self, att_ws, ilens, olens):
ga_masks = self._make_ga_masks(ilens, olens).to(att_ws.device)
seq_masks = self._make_masks(ilens, olens).to(att_ws.device)
losses = ga_masks * att_ws
loss = torch.mean(losses.masked_select(seq_masks))
return loss
@staticmethod
def _make_ga_mask(ilen, olen, sigma):
grid_x, grid_y = torch.meshgrid(torch.arange(olen).to(olen), torch.arange(ilen).to(ilen))
grid_x, grid_y = grid_x.float(), grid_y.float()
return 1.0 - torch.exp(-(grid_y / ilen - grid_x / olen)**2 /
(2 * (sigma**2)))
@staticmethod
def _make_masks(ilens, olens):
in_masks = sequence_mask(ilens)
out_masks = sequence_mask(olens)
return out_masks.unsqueeze(-1) & in_masks.unsqueeze(-2)
class Huber(nn.Module):
# pylint: disable=R0201
def forward(self, x, y, length=None):
"""
Shapes:
x: B x T
y: B x T
length: B
"""
mask = sequence_mask(sequence_length=length, max_len=y.size(1)).float()
return torch.nn.functional.smooth_l1_loss(
x * mask, y * mask, reduction='sum') / mask.sum()
########################
# MODEL LOSS LAYERS
########################
class TacotronLoss(torch.nn.Module):
"""Collection of Tacotron set-up based on provided config."""
def __init__(self, c, stopnet_pos_weight=10, ga_sigma=0.4):
super(TacotronLoss, self).__init__()
self.stopnet_pos_weight = stopnet_pos_weight
self.ga_alpha = c.ga_alpha
self.decoder_diff_spec_alpha = c.decoder_diff_spec_alpha
self.postnet_diff_spec_alpha = c.postnet_diff_spec_alpha
self.decoder_alpha = c.decoder_loss_alpha
self.postnet_alpha = c.postnet_loss_alpha
self.decoder_ssim_alpha = c.decoder_ssim_alpha
self.postnet_ssim_alpha = c.postnet_ssim_alpha
self.config = c
# postnet and decoder loss
if c.loss_masking:
self.criterion = L1LossMasked(c.seq_len_norm) if c.model in [
"Tacotron"
] else MSELossMasked(c.seq_len_norm)
else:
self.criterion = nn.L1Loss() if c.model in ["Tacotron"
] else nn.MSELoss()
# guided attention loss
if c.ga_alpha > 0:
self.criterion_ga = GuidedAttentionLoss(sigma=ga_sigma)
# differential spectral loss
if c.postnet_diff_spec_alpha > 0 or c.decoder_diff_spec_alpha > 0:
self.criterion_diff_spec = DifferentailSpectralLoss(loss_func=self.criterion)
# ssim loss
if c.postnet_ssim_alpha > 0 or c.decoder_ssim_alpha > 0:
self.criterion_ssim = SSIMLoss()
# stopnet loss
# pylint: disable=not-callable
self.criterion_st = BCELossMasked(
pos_weight=torch.tensor(stopnet_pos_weight)) if c.stopnet else None
def forward(self, postnet_output, decoder_output, mel_input, linear_input,
stopnet_output, stopnet_target, output_lens, decoder_b_output,
alignments, alignment_lens, alignments_backwards, input_lens):
# decoder outputs linear or mel spectrograms for Tacotron and Tacotron2
# the target should be set acccordingly
postnet_target = linear_input if self.config.model.lower() in ["tacotron"] else mel_input
return_dict = {}
# remove lengths if no masking is applied
if not self.config.loss_masking:
output_lens = None
# decoder and postnet losses
if self.config.loss_masking:
if self.decoder_alpha > 0:
decoder_loss = self.criterion(decoder_output, mel_input,
output_lens)
if self.postnet_alpha > 0:
postnet_loss = self.criterion(postnet_output, postnet_target,
output_lens)
else:
if self.decoder_alpha > 0:
decoder_loss = self.criterion(decoder_output, mel_input)
if self.postnet_alpha > 0:
postnet_loss = self.criterion(postnet_output, postnet_target)
loss = self.decoder_alpha * decoder_loss + self.postnet_alpha * postnet_loss
return_dict['decoder_loss'] = decoder_loss
return_dict['postnet_loss'] = postnet_loss
# stopnet loss
stop_loss = self.criterion_st(
stopnet_output, stopnet_target,
output_lens) if self.config.stopnet else torch.zeros(1)
if not self.config.separate_stopnet and self.config.stopnet:
loss += stop_loss
return_dict['stopnet_loss'] = stop_loss
# backward decoder loss (if enabled)
if self.config.bidirectional_decoder:
if self.config.loss_masking:
decoder_b_loss = self.criterion(
torch.flip(decoder_b_output, dims=(1, )), mel_input,
output_lens)
else:
decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1, )), mel_input)
decoder_c_loss = torch.nn.functional.l1_loss(torch.flip(decoder_b_output, dims=(1, )), decoder_output)
loss += self.decoder_alpha * (decoder_b_loss + decoder_c_loss)
return_dict['decoder_b_loss'] = decoder_b_loss
return_dict['decoder_c_loss'] = decoder_c_loss
# double decoder consistency loss (if enabled)
if self.config.double_decoder_consistency:
if self.config.loss_masking:
decoder_b_loss = self.criterion(decoder_b_output, mel_input,
output_lens)
else:
decoder_b_loss = self.criterion(decoder_b_output, mel_input)
# decoder_c_loss = torch.nn.functional.l1_loss(decoder_b_output, decoder_output)
attention_c_loss = torch.nn.functional.l1_loss(alignments, alignments_backwards)
loss += self.decoder_alpha * (decoder_b_loss + attention_c_loss)
return_dict['decoder_coarse_loss'] = decoder_b_loss
return_dict['decoder_ddc_loss'] = attention_c_loss
# guided attention loss (if enabled)
if self.config.ga_alpha > 0:
ga_loss = self.criterion_ga(alignments, input_lens, alignment_lens)
loss += ga_loss * self.ga_alpha
return_dict['ga_loss'] = ga_loss
# decoder differential spectral loss
if self.config.decoder_diff_spec_alpha > 0:
decoder_diff_spec_loss = self.criterion_diff_spec(decoder_output, mel_input, output_lens)
loss += decoder_diff_spec_loss * self.decoder_diff_spec_alpha
return_dict['decoder_diff_spec_loss'] = decoder_diff_spec_loss
# postnet differential spectral loss
if self.config.postnet_diff_spec_alpha > 0:
postnet_diff_spec_loss = self.criterion_diff_spec(postnet_output, postnet_target, output_lens)
loss += postnet_diff_spec_loss * self.postnet_diff_spec_alpha
return_dict['postnet_diff_spec_loss'] = postnet_diff_spec_loss
# decoder ssim loss
if self.config.decoder_ssim_alpha > 0:
decoder_ssim_loss = self.criterion_ssim(decoder_output, mel_input, output_lens)
loss += decoder_ssim_loss * self.postnet_ssim_alpha
return_dict['decoder_ssim_loss'] = decoder_ssim_loss
# postnet ssim loss
if self.config.postnet_ssim_alpha > 0:
postnet_ssim_loss = self.criterion_ssim(postnet_output, postnet_target, output_lens)
loss += postnet_ssim_loss * self.postnet_ssim_alpha
return_dict['postnet_ssim_loss'] = postnet_ssim_loss
return_dict['loss'] = loss
# check if any loss is NaN
for key, loss in return_dict.items():
if torch.isnan(loss):
raise RuntimeError(f" [!] NaN loss with {key}.")
return return_dict
class GlowTTSLoss(torch.nn.Module):
def __init__(self):
super().__init__()
self.constant_factor = 0.5 * math.log(2 * math.pi)
def forward(self, z, means, scales, log_det, y_lengths, o_dur_log,
o_attn_dur, x_lengths):
return_dict = {}
# flow loss - neg log likelihood
pz = torch.sum(scales) + 0.5 * torch.sum(
torch.exp(-2 * scales) * (z - means)**2)
log_mle = self.constant_factor + (pz - torch.sum(log_det)) / (
torch.sum(y_lengths) * z.shape[1])
# duration loss - MSE
# loss_dur = torch.sum((o_dur_log - o_attn_dur)**2) / torch.sum(x_lengths)
# duration loss - huber loss
loss_dur = torch.nn.functional.smooth_l1_loss(
o_dur_log, o_attn_dur, reduction='sum') / torch.sum(x_lengths)
return_dict['loss'] = log_mle + loss_dur
return_dict['log_mle'] = log_mle
return_dict['loss_dur'] = loss_dur
# check if any loss is NaN
for key, loss in return_dict.items():
if torch.isnan(loss):
raise RuntimeError(f" [!] NaN loss with {key}.")
return return_dict
class SpeedySpeechLoss(nn.Module):
def __init__(self, c):
super().__init__()
self.l1 = L1LossMasked(False)
self.ssim = SSIMLoss()
self.huber = Huber()
self.ssim_alpha = c.ssim_alpha
self.huber_alpha = c.huber_alpha
self.l1_alpha = c.l1_alpha
def forward(self, decoder_output, decoder_target, decoder_output_lens, dur_output, dur_target, input_lens):
l1_loss = self.l1(decoder_output, decoder_target, decoder_output_lens)
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
huber_loss = self.huber(dur_output, dur_target, input_lens)
loss = self.l1_alpha * l1_loss + self.ssim_alpha * ssim_loss + self.huber_alpha * huber_loss
return {'loss': loss, 'loss_l1': l1_loss, 'loss_ssim': ssim_loss, 'loss_dur': huber_loss}
def mse_loss_custom(x, y):
"""MSE loss using the torch back-end without reduction.
It uses less VRAM than the raw code"""
expanded_x, expanded_y = torch.broadcast_tensors(x, y)
return torch._C._nn.mse_loss(expanded_x, expanded_y, 0) # pylint: disable=protected-access, c-extension-no-member
class MDNLoss(nn.Module):
"""Mixture of Density Network Loss as described in https://arxiv.org/pdf/2003.01950.pdf.
"""
def forward(self, logp, text_lengths, mel_lengths): # pylint: disable=no-self-use
'''
Shapes:
mu: [B, D, T]
log_sigma: [B, D, T]
mel_spec: [B, D, T]
'''
B, T_seq, T_mel = logp.shape
log_alpha = logp.new_ones(B, T_seq, T_mel)*(-1e4)
log_alpha[:, 0, 0] = logp[:, 0, 0]
for t in range(1, T_mel):
prev_step = torch.cat([log_alpha[:, :, t-1:t], functional.pad(log_alpha[:, :, t-1:t],
(0, 0, 1, -1), value=-1e4)], dim=-1)
log_alpha[:, :, t] = torch.logsumexp(prev_step + 1e-4, dim=-1) + logp[:, :, t]
alpha_last = log_alpha[torch.arange(B), text_lengths-1, mel_lengths-1]
mdn_loss = -alpha_last.mean() / T_seq
return mdn_loss#, log_prob_matrix
class AlignTTSLoss(nn.Module):
"""Modified AlignTTS Loss.
Computes following losses
- L1 and SSIM losses from output spectrograms.
- Huber loss for duration predictor.
- MDNLoss for Mixture of Density Network.
All the losses are aggregated by a weighted sum with the loss alphas.
Alphas can be scheduled based on number of steps.
Args:
c (dict): TTS model configuration.
"""
def __init__(self, c):
super().__init__()
self.mdn_loss = MDNLoss()
self.spec_loss = MSELossMasked(False)
self.ssim = SSIMLoss()
self.dur_loss = MSELossMasked(False)
self.ssim_alpha = c.ssim_alpha
self.dur_loss_alpha = c.dur_loss_alpha
self.spec_loss_alpha = c.spec_loss_alpha
self.mdn_alpha = c.mdn_alpha
def forward(self, logp, decoder_output, decoder_target, decoder_output_lens, dur_output, dur_target,
input_lens, step, phase):
ssim_alpha, dur_loss_alpha, spec_loss_alpha, mdn_alpha = self.set_alphas(
step)
spec_loss, ssim_loss, dur_loss, mdn_loss = 0, 0, 0, 0
if phase == 0:
mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens)
elif phase == 1:
spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens)
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
elif phase == 2:
mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens)
spec_loss = self.spec_lossX(decoder_output, decoder_target, decoder_output_lens)
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
elif phase == 3:
dur_loss = self.dur_loss(dur_output.unsqueeze(2), dur_target.unsqueeze(2), input_lens)
else:
mdn_loss = self.mdn_loss(logp, input_lens, decoder_output_lens)
spec_loss = self.spec_loss(decoder_output, decoder_target, decoder_output_lens)
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
dur_loss = self.dur_loss(dur_output.unsqueeze(2), dur_target.unsqueeze(2), input_lens)
loss = spec_loss_alpha * spec_loss + ssim_alpha * ssim_loss + dur_loss_alpha * dur_loss + mdn_alpha * mdn_loss
return {'loss': loss, 'loss_l1': spec_loss, 'loss_ssim': ssim_loss, 'loss_dur': dur_loss, 'mdn_loss': mdn_loss}
@staticmethod
def _set_alpha(step, alpha_settings):
'''Set the loss alpha wrt number of steps.
Return the corresponding value if no schedule is set.
Example:
Setting a alpha schedule.
if ```alpha_settings``` is ```[[0, 1], [10000, 0.1]]``` then ```return_alpha == 1``` until 10k steps, then set to 0.1.
if ```alpha_settings``` is a constant value then ```return_alpha``` is set to that constant.
Args:
step (int): number of training steps.
alpha_settings (int or list): constant alpha value or a list defining the schedule as explained above.
'''
return_alpha = None
if isinstance(alpha_settings, list):
for key, alpha in alpha_settings:
if key < step:
return_alpha = alpha
elif isinstance(alpha_settings, (float, int)):
return_alpha = alpha_settings
return return_alpha
def set_alphas(self, step):
'''Set the alpha values for all the loss functions
'''
ssim_alpha = self._set_alpha(step, self.ssim_alpha)
dur_loss_alpha = self._set_alpha(step, self.dur_loss_alpha)
spec_loss_alpha = self._set_alpha(step, self.spec_loss_alpha)
mdn_alpha = self._set_alpha(step, self.mdn_alpha)
return ssim_alpha, dur_loss_alpha, spec_loss_alpha, mdn_alpha