mirror of https://github.com/coqui-ai/TTS.git
483 lines
20 KiB
Python
483 lines
20 KiB
Python
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
from TTS.tts.layers.tacotron.common_layers import Linear
|
|
from scipy.stats import betabinom
|
|
|
|
|
|
class LocationLayer(nn.Module):
|
|
"""Layers for Location Sensitive Attention
|
|
|
|
Args:
|
|
attention_dim (int): number of channels in the input tensor.
|
|
attention_n_filters (int, optional): number of filters in convolution. Defaults to 32.
|
|
attention_kernel_size (int, optional): kernel size of convolution filter. Defaults to 31.
|
|
"""
|
|
def __init__(self,
|
|
attention_dim,
|
|
attention_n_filters=32,
|
|
attention_kernel_size=31):
|
|
super(LocationLayer, self).__init__()
|
|
self.location_conv1d = nn.Conv1d(
|
|
in_channels=2,
|
|
out_channels=attention_n_filters,
|
|
kernel_size=attention_kernel_size,
|
|
stride=1,
|
|
padding=(attention_kernel_size - 1) // 2,
|
|
bias=False)
|
|
self.location_dense = Linear(
|
|
attention_n_filters, attention_dim, bias=False, init_gain='tanh')
|
|
|
|
def forward(self, attention_cat):
|
|
"""
|
|
Shapes:
|
|
attention_cat: [B, 2, C]
|
|
"""
|
|
processed_attention = self.location_conv1d(attention_cat)
|
|
processed_attention = self.location_dense(
|
|
processed_attention.transpose(1, 2))
|
|
return processed_attention
|
|
|
|
|
|
class GravesAttention(nn.Module):
|
|
"""Graves Attention as is ref1 with updates from ref2.
|
|
ref1: https://arxiv.org/abs/1910.10288
|
|
ref2: https://arxiv.org/pdf/1906.01083.pdf
|
|
|
|
Args:
|
|
query_dim (int): number of channels in query tensor.
|
|
K (int): number of Gaussian heads to be used for computing attention.
|
|
"""
|
|
COEF = 0.3989422917366028 # numpy.sqrt(1/(2*numpy.pi))
|
|
|
|
def __init__(self, query_dim, K):
|
|
|
|
super(GravesAttention, self).__init__()
|
|
self._mask_value = 1e-8
|
|
self.K = K
|
|
# self.attention_alignment = 0.05
|
|
self.eps = 1e-5
|
|
self.J = None
|
|
self.N_a = nn.Sequential(
|
|
nn.Linear(query_dim, query_dim, bias=True),
|
|
nn.ReLU(),
|
|
nn.Linear(query_dim, 3*K, bias=True))
|
|
self.attention_weights = None
|
|
self.mu_prev = None
|
|
self.init_layers()
|
|
|
|
def init_layers(self):
|
|
torch.nn.init.constant_(self.N_a[2].bias[(2*self.K):(3*self.K)], 1.) # bias mean
|
|
torch.nn.init.constant_(self.N_a[2].bias[self.K:(2*self.K)], 10) # bias std
|
|
|
|
def init_states(self, inputs):
|
|
if self.J is None or inputs.shape[1]+1 > self.J.shape[-1]:
|
|
self.J = torch.arange(0, inputs.shape[1]+2.0).to(inputs.device) + 0.5
|
|
self.attention_weights = torch.zeros(inputs.shape[0], inputs.shape[1]).to(inputs.device)
|
|
self.mu_prev = torch.zeros(inputs.shape[0], self.K).to(inputs.device)
|
|
|
|
# pylint: disable=R0201
|
|
# pylint: disable=unused-argument
|
|
def preprocess_inputs(self, inputs):
|
|
return None
|
|
|
|
def forward(self, query, inputs, processed_inputs, mask):
|
|
"""
|
|
Shapes:
|
|
query: [B, C_attention_rnn]
|
|
inputs: [B, T_in, C_encoder]
|
|
processed_inputs: place_holder
|
|
mask: [B, T_in]
|
|
"""
|
|
gbk_t = self.N_a(query)
|
|
gbk_t = gbk_t.view(gbk_t.size(0), -1, self.K)
|
|
|
|
# attention model parameters
|
|
# each B x K
|
|
g_t = gbk_t[:, 0, :]
|
|
b_t = gbk_t[:, 1, :]
|
|
k_t = gbk_t[:, 2, :]
|
|
|
|
# dropout to decorrelate attention heads
|
|
g_t = torch.nn.functional.dropout(g_t, p=0.5, training=self.training)
|
|
|
|
# attention GMM parameters
|
|
sig_t = torch.nn.functional.softplus(b_t) + self.eps
|
|
|
|
mu_t = self.mu_prev + torch.nn.functional.softplus(k_t)
|
|
g_t = torch.softmax(g_t, dim=-1) + self.eps
|
|
|
|
j = self.J[:inputs.size(1)+1]
|
|
|
|
# attention weights
|
|
phi_t = g_t.unsqueeze(-1) * (1 / (1 + torch.sigmoid((mu_t.unsqueeze(-1) - j) / sig_t.unsqueeze(-1))))
|
|
|
|
# discritize attention weights
|
|
alpha_t = torch.sum(phi_t, 1)
|
|
alpha_t = alpha_t[:, 1:] - alpha_t[:, :-1]
|
|
alpha_t[alpha_t == 0] = 1e-8
|
|
|
|
# apply masking
|
|
if mask is not None:
|
|
alpha_t.data.masked_fill_(~mask, self._mask_value)
|
|
|
|
context = torch.bmm(alpha_t.unsqueeze(1), inputs).squeeze(1)
|
|
self.attention_weights = alpha_t
|
|
self.mu_prev = mu_t
|
|
return context
|
|
|
|
|
|
class OriginalAttention(nn.Module):
|
|
"""Bahdanau Attention with various optional modifications. Proposed below.
|
|
- Location sensitive attnetion: https://arxiv.org/abs/1712.05884
|
|
- Forward Attention: https://arxiv.org/abs/1807.06736 + state masking at inference
|
|
- Using sigmoid instead of softmax normalization
|
|
- Attention windowing at inference time
|
|
|
|
Note:
|
|
Location Sensitive Attention is an attention mechanism that extends the additive attention mechanism
|
|
to use cumulative attention weights from previous decoder time steps as an additional feature.
|
|
|
|
Forward attention considers only the alignment paths that satisfy the monotonic condition at each
|
|
decoder timestep. The modified attention probabilities at each timestep are computed recursively
|
|
using a forward algorithm.
|
|
|
|
Transition agent for forward attention is further proposed, which helps the attention mechanism
|
|
to make decisions whether to move forward or stay at each decoder timestep.
|
|
|
|
Attention windowing applies a sliding windows to time steps of the input tensor centering at the last
|
|
time step with the largest attention weight. It is especially useful at inference to keep the attention
|
|
alignment diagonal.
|
|
|
|
|
|
Args:
|
|
query_dim (int): number of channels in the query tensor.
|
|
embedding_dim (int): number of channels in the vakue tensor. In general, the value tensor is the output of the encoder layer.
|
|
attention_dim (int): number of channels of the inner attention layers.
|
|
location_attention (bool): enable/disable location sensitive attention.
|
|
attention_location_n_filters (int): number of location attention filters.
|
|
attention_location_kernel_size (int): filter size of location attention convolution layer.
|
|
windowing (int): window size for attention windowing. if it is 5, for computing the attention, it only considers the time steps [(t-5), ..., (t+5)] of the input.
|
|
norm (str): normalization method applied to the attention weights. 'softmax' or 'sigmoid'
|
|
forward_attn (bool): enable/disable forward attention.
|
|
trans_agent (bool): enable/disable transition agent in the forward attention.
|
|
forward_attn_mask (int): enable/disable an explicit masking in forward attention. It is useful to set at especially inference time.
|
|
"""
|
|
# Pylint gets confused by PyTorch conventions here
|
|
#pylint: disable=attribute-defined-outside-init
|
|
def __init__(self, query_dim, embedding_dim, attention_dim,
|
|
location_attention, attention_location_n_filters,
|
|
attention_location_kernel_size, windowing, norm, forward_attn,
|
|
trans_agent, forward_attn_mask):
|
|
super(OriginalAttention, self).__init__()
|
|
self.query_layer = Linear(
|
|
query_dim, attention_dim, bias=False, init_gain='tanh')
|
|
self.inputs_layer = Linear(
|
|
embedding_dim, attention_dim, bias=False, init_gain='tanh')
|
|
self.v = Linear(attention_dim, 1, bias=True)
|
|
if trans_agent:
|
|
self.ta = nn.Linear(
|
|
query_dim + embedding_dim, 1, bias=True)
|
|
if location_attention:
|
|
self.location_layer = LocationLayer(
|
|
attention_dim,
|
|
attention_location_n_filters,
|
|
attention_location_kernel_size,
|
|
)
|
|
self._mask_value = -float("inf")
|
|
self.windowing = windowing
|
|
self.win_idx = None
|
|
self.norm = norm
|
|
self.forward_attn = forward_attn
|
|
self.trans_agent = trans_agent
|
|
self.forward_attn_mask = forward_attn_mask
|
|
self.location_attention = location_attention
|
|
|
|
def init_win_idx(self):
|
|
self.win_idx = -1
|
|
self.win_back = 2
|
|
self.win_front = 6
|
|
|
|
def init_forward_attn(self, inputs):
|
|
B = inputs.shape[0]
|
|
T = inputs.shape[1]
|
|
self.alpha = torch.cat(
|
|
[torch.ones([B, 1]),
|
|
torch.zeros([B, T])[:, :-1] + 1e-7], dim=1).to(inputs.device)
|
|
self.u = (0.5 * torch.ones([B, 1])).to(inputs.device)
|
|
|
|
def init_location_attention(self, inputs):
|
|
B = inputs.size(0)
|
|
T = inputs.size(1)
|
|
self.attention_weights_cum = torch.zeros([B, T], device=inputs.device)
|
|
|
|
def init_states(self, inputs):
|
|
B = inputs.size(0)
|
|
T = inputs.size(1)
|
|
self.attention_weights = torch.zeros([B, T], device=inputs.device)
|
|
if self.location_attention:
|
|
self.init_location_attention(inputs)
|
|
if self.forward_attn:
|
|
self.init_forward_attn(inputs)
|
|
if self.windowing:
|
|
self.init_win_idx()
|
|
|
|
def preprocess_inputs(self, inputs):
|
|
return self.inputs_layer(inputs)
|
|
|
|
def update_location_attention(self, alignments):
|
|
self.attention_weights_cum += alignments
|
|
|
|
def get_location_attention(self, query, processed_inputs):
|
|
attention_cat = torch.cat((self.attention_weights.unsqueeze(1),
|
|
self.attention_weights_cum.unsqueeze(1)),
|
|
dim=1)
|
|
processed_query = self.query_layer(query.unsqueeze(1))
|
|
processed_attention_weights = self.location_layer(attention_cat)
|
|
energies = self.v(
|
|
torch.tanh(processed_query + processed_attention_weights +
|
|
processed_inputs))
|
|
energies = energies.squeeze(-1)
|
|
return energies, processed_query
|
|
|
|
def get_attention(self, query, processed_inputs):
|
|
processed_query = self.query_layer(query.unsqueeze(1))
|
|
energies = self.v(torch.tanh(processed_query + processed_inputs))
|
|
energies = energies.squeeze(-1)
|
|
return energies, processed_query
|
|
|
|
def apply_windowing(self, attention, inputs):
|
|
back_win = self.win_idx - self.win_back
|
|
front_win = self.win_idx + self.win_front
|
|
if back_win > 0:
|
|
attention[:, :back_win] = -float("inf")
|
|
if front_win < inputs.shape[1]:
|
|
attention[:, front_win:] = -float("inf")
|
|
# this is a trick to solve a special problem.
|
|
# but it does not hurt.
|
|
if self.win_idx == -1:
|
|
attention[:, 0] = attention.max()
|
|
# Update the window
|
|
self.win_idx = torch.argmax(attention, 1).long()[0].item()
|
|
return attention
|
|
|
|
def apply_forward_attention(self, alignment):
|
|
# forward attention
|
|
fwd_shifted_alpha = F.pad(
|
|
self.alpha[:, :-1].clone().to(alignment.device), (1, 0, 0, 0))
|
|
# compute transition potentials
|
|
alpha = ((1 - self.u) * self.alpha
|
|
+ self.u * fwd_shifted_alpha
|
|
+ 1e-8) * alignment
|
|
# force incremental alignment
|
|
if not self.training and self.forward_attn_mask:
|
|
_, n = fwd_shifted_alpha.max(1)
|
|
val, _ = alpha.max(1)
|
|
for b in range(alignment.shape[0]):
|
|
alpha[b, n[b] + 3:] = 0
|
|
alpha[b, :(
|
|
n[b] - 1
|
|
)] = 0 # ignore all previous states to prevent repetition.
|
|
alpha[b,
|
|
(n[b] - 2
|
|
)] = 0.01 * val[b] # smoothing factor for the prev step
|
|
# renormalize attention weights
|
|
alpha = alpha / alpha.sum(dim=1, keepdim=True)
|
|
return alpha
|
|
|
|
def forward(self, query, inputs, processed_inputs, mask):
|
|
"""
|
|
shapes:
|
|
query: [B, C_attn_rnn]
|
|
inputs: [B, T_en, D_en]
|
|
processed_inputs: [B, T_en, D_attn]
|
|
mask: [B, T_en]
|
|
"""
|
|
if self.location_attention:
|
|
attention, _ = self.get_location_attention(
|
|
query, processed_inputs)
|
|
else:
|
|
attention, _ = self.get_attention(
|
|
query, processed_inputs)
|
|
# apply masking
|
|
if mask is not None:
|
|
attention.data.masked_fill_(~mask, self._mask_value)
|
|
# apply windowing - only in eval mode
|
|
if not self.training and self.windowing:
|
|
attention = self.apply_windowing(attention, inputs)
|
|
|
|
# normalize attention values
|
|
if self.norm == "softmax":
|
|
alignment = torch.softmax(attention, dim=-1)
|
|
elif self.norm == "sigmoid":
|
|
alignment = torch.sigmoid(attention) / torch.sigmoid(
|
|
attention).sum(
|
|
dim=1, keepdim=True)
|
|
else:
|
|
raise ValueError("Unknown value for attention norm type")
|
|
|
|
if self.location_attention:
|
|
self.update_location_attention(alignment)
|
|
|
|
# apply forward attention if enabled
|
|
if self.forward_attn:
|
|
alignment = self.apply_forward_attention(alignment)
|
|
self.alpha = alignment
|
|
|
|
context = torch.bmm(alignment.unsqueeze(1), inputs)
|
|
context = context.squeeze(1)
|
|
self.attention_weights = alignment
|
|
|
|
# compute transition agent
|
|
if self.forward_attn and self.trans_agent:
|
|
ta_input = torch.cat([context, query.squeeze(1)], dim=-1)
|
|
self.u = torch.sigmoid(self.ta(ta_input))
|
|
return context
|
|
|
|
|
|
class MonotonicDynamicConvolutionAttention(nn.Module):
|
|
"""Dynamic convolution attention from
|
|
https://arxiv.org/pdf/1910.10288.pdf
|
|
|
|
|
|
query -> linear -> tanh -> linear ->|
|
|
| mask values
|
|
v | |
|
|
atten_w(t-1) -|-> conv1d_dynamic -> linear -|-> tanh -> + -> softmax -> * -> * -> context
|
|
|-> conv1d_static -> linear -| |
|
|
|-> conv1d_prior -> log ----------------|
|
|
|
|
query: attention rnn output.
|
|
|
|
Note:
|
|
Dynamic convolution attention is an alternation of the location senstive attention with
|
|
dynamically computed convolution filters from the previous attention scores and a set of
|
|
constraints to keep the attention alignment diagonal.
|
|
|
|
Args:
|
|
query_dim (int): number of channels in the query tensor.
|
|
embedding_dim (int): number of channels in the value tensor.
|
|
static_filter_dim (int): number of channels in the convolution layer computing the static filters.
|
|
static_kernel_size (int): kernel size for the convolution layer computing the static filters.
|
|
dynamic_filter_dim (int): number of channels in the convolution layer computing the dynamic filters.
|
|
dynamic_kernel_size (int): kernel size for the convolution layer computing the dynamic filters.
|
|
prior_filter_len (int, optional): [description]. Defaults to 11 from the paper.
|
|
alpha (float, optional): [description]. Defaults to 0.1 from the paper.
|
|
beta (float, optional): [description]. Defaults to 0.9 from the paper.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
query_dim,
|
|
embedding_dim, # pylint: disable=unused-argument
|
|
attention_dim,
|
|
static_filter_dim,
|
|
static_kernel_size,
|
|
dynamic_filter_dim,
|
|
dynamic_kernel_size,
|
|
prior_filter_len=11,
|
|
alpha=0.1,
|
|
beta=0.9,
|
|
):
|
|
super().__init__()
|
|
self._mask_value = 1e-8
|
|
self.dynamic_filter_dim = dynamic_filter_dim
|
|
self.dynamic_kernel_size = dynamic_kernel_size
|
|
self.prior_filter_len = prior_filter_len
|
|
self.attention_weights = None
|
|
# setup key and query layers
|
|
self.query_layer = nn.Linear(query_dim, attention_dim)
|
|
self.key_layer = nn.Linear(
|
|
attention_dim, dynamic_filter_dim * dynamic_kernel_size, bias=False
|
|
)
|
|
self.static_filter_conv = nn.Conv1d(
|
|
1,
|
|
static_filter_dim,
|
|
static_kernel_size,
|
|
padding=(static_kernel_size - 1) // 2,
|
|
bias=False,
|
|
)
|
|
self.static_filter_layer = nn.Linear(static_filter_dim, attention_dim, bias=False)
|
|
self.dynamic_filter_layer = nn.Linear(dynamic_filter_dim, attention_dim)
|
|
self.v = nn.Linear(attention_dim, 1, bias=False)
|
|
|
|
prior = betabinom.pmf(range(prior_filter_len), prior_filter_len - 1,
|
|
alpha, beta)
|
|
self.register_buffer("prior", torch.FloatTensor(prior).flip(0))
|
|
|
|
# pylint: disable=unused-argument
|
|
def forward(self, query, inputs, processed_inputs, mask):
|
|
"""
|
|
query: [B, C_attn_rnn]
|
|
inputs: [B, T_en, D_en]
|
|
processed_inputs: place holder.
|
|
mask: [B, T_en]
|
|
"""
|
|
# compute prior filters
|
|
prior_filter = F.conv1d(
|
|
F.pad(self.attention_weights.unsqueeze(1),
|
|
(self.prior_filter_len - 1, 0)), self.prior.view(1, 1, -1))
|
|
prior_filter = torch.log(prior_filter.clamp_min_(1e-6)).squeeze(1)
|
|
G = self.key_layer(torch.tanh(self.query_layer(query)))
|
|
# compute dynamic filters
|
|
dynamic_filter = F.conv1d(
|
|
self.attention_weights.unsqueeze(0),
|
|
G.view(-1, 1, self.dynamic_kernel_size),
|
|
padding=(self.dynamic_kernel_size - 1) // 2,
|
|
groups=query.size(0),
|
|
)
|
|
dynamic_filter = dynamic_filter.view(query.size(0), self.dynamic_filter_dim, -1).transpose(1, 2)
|
|
# compute static filters
|
|
static_filter = self.static_filter_conv(self.attention_weights.unsqueeze(1)).transpose(1, 2)
|
|
alignment = self.v(
|
|
torch.tanh(
|
|
self.static_filter_layer(static_filter) +
|
|
self.dynamic_filter_layer(dynamic_filter))).squeeze(-1) + prior_filter
|
|
# compute attention weights
|
|
attention_weights = F.softmax(alignment, dim=-1)
|
|
# apply masking
|
|
if mask is not None:
|
|
attention_weights.data.masked_fill_(~mask, self._mask_value)
|
|
self.attention_weights = attention_weights
|
|
# compute context
|
|
context = torch.bmm(attention_weights.unsqueeze(1), inputs).squeeze(1)
|
|
return context
|
|
|
|
def preprocess_inputs(self, inputs): # pylint: disable=no-self-use
|
|
return None
|
|
|
|
def init_states(self, inputs):
|
|
B = inputs.size(0)
|
|
T = inputs.size(1)
|
|
self.attention_weights = torch.zeros([B, T], device=inputs.device)
|
|
self.attention_weights[:, 0] = 1.
|
|
|
|
|
|
def init_attn(attn_type, query_dim, embedding_dim, attention_dim,
|
|
location_attention, attention_location_n_filters,
|
|
attention_location_kernel_size, windowing, norm, forward_attn,
|
|
trans_agent, forward_attn_mask, attn_K):
|
|
if attn_type == "original":
|
|
return OriginalAttention(query_dim, embedding_dim, attention_dim,
|
|
location_attention,
|
|
attention_location_n_filters,
|
|
attention_location_kernel_size, windowing,
|
|
norm, forward_attn, trans_agent,
|
|
forward_attn_mask)
|
|
if attn_type == "graves":
|
|
return GravesAttention(query_dim, attn_K)
|
|
if attn_type == "dynamic_convolution":
|
|
return MonotonicDynamicConvolutionAttention(query_dim,
|
|
embedding_dim,
|
|
attention_dim,
|
|
static_filter_dim=8,
|
|
static_kernel_size=21,
|
|
dynamic_filter_dim=8,
|
|
dynamic_kernel_size=21,
|
|
prior_filter_len=11,
|
|
alpha=0.1,
|
|
beta=0.9)
|
|
|
|
raise RuntimeError(
|
|
" [!] Given Attention Type '{attn_type}' is not exist.")
|