coqui-tts/TTS/speaker_encoder/configs/config_resnet_angleproto.json

956 lines
37 KiB
JSON

{
"model": "speaker_encoder",
"run_name": "speaker_encoder",
"run_description": "resnet speaker encoder trained with commonvoice all languages dev and train, Voxceleb 1 dev and Voxceleb 2 dev",
// AUDIO PARAMETERS
"audio":{
// Audio processing parameters
"num_mels": 80, // size of the mel spec frame.
"fft_size": 1024, // number of stft frequency levels. Size of the linear spectogram frame.
"sample_rate": 16000, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
"win_length": 1024, // stft window length in ms.
"hop_length": 256, // stft window hop-lengh in ms.
"frame_length_ms": null, // stft window length in ms.If null, 'win_length' is used.
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
"min_level_db": -100, // normalization range
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
"power": 1.5, // value to sharpen wav signals after GL algorithm.
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
"stft_pad_mode": "reflect",
// Normalization parameters
"signal_norm": true, // normalize the spec values in range [0, 1]
"symmetric_norm": true, // move normalization to range [-1, 1]
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
"clip_norm": true, // clip normalized values into the range.
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
"spec_gain": 20.0,
"do_trim_silence": false, // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
"stats_path": null // DO NOT USE WITH MULTI_SPEAKER MODEL. scaler stats file computed by 'compute_statistics.py'. If it is defined, mean-std based notmalization is used and other normalization params are ignored
},
"reinit_layers": [],
"loss": "angleproto", // "ge2e" to use Generalized End-to-End loss, "angleproto" to use Angular Prototypical loss and "softmaxproto" to use Softmax with Angular Prototypical loss
"grad_clip": 3.0, // upper limit for gradients for clipping.
"max_train_step": 1000000, // total number of steps to train.
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
"lr_decay": false, // if true, Noam learning rate decaying is applied through training.
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
"steps_plot_stats": 100, // number of steps to plot embeddings.
// Speakers config
"num_speakers_in_batch": 200, // Batch size for training.
"num_utters_per_speaker": 2, //
"skip_speakers": true, // skip speakers with samples less than "num_utters_per_speaker"
"voice_len": 2, // number of seconds for each training instance
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
"wd": 0.000001, // Weight decay weight.
"checkpoint": true, // If true, it saves checkpoints per "save_step"
"save_step": 1000, // Number of training steps expected to save the best checkpoints in training.
"print_step": 50, // Number of steps to log traning on console.
"output_path": "../checkpoints/speaker_encoder/angleproto/resnet_voxceleb1_and_voxceleb2-and-common-voice-all-using-angleproto/", // DATASET-RELATED: output path for all training outputs.
"audio_augmentation": {
"p": 0.5, // propability of apply this method, 0 is disable rir and additive noise augmentation
"rir":{
"rir_path": "/workspace/store/ecasanova/ComParE/RIRS_NOISES/simulated_rirs/",
"conv_mode": "full"
},
"additive":{
"sounds_path": "/workspace/store/ecasanova/ComParE/musan/",
// list of each of the directories in your data augmentation, if a directory is in "sounds_path" but is not listed here it will be ignored
"speech":{
"min_snr_in_db": 13,
"max_snr_in_db": 20,
"min_num_noises": 2,
"max_num_noises": 3
},
"noise":{
"min_snr_in_db": 0,
"max_snr_in_db": 15,
"min_num_noises": 1,
"max_num_noises": 1
},
"music":{
"min_snr_in_db": 5,
"max_snr_in_db": 15,
"min_num_noises": 1,
"max_num_noises": 1
}
},
//add a gaussian noise to the data in order to increase robustness
"gaussian":{ // as the insertion of Gaussian noise is quick to be calculated, we added it after loading the wav file, this way, even audios that were reused with the cache can receive this noise
"p": 0.5, // propability of apply this method, 0 is disable
"min_amplitude": 0.0,
"max_amplitude": 1e-5
}
},
"model_params": {
"model_name": "resnet",
"input_dim": 80,
"proj_dim": 512
},
"storage": {
"sample_from_storage_p": 0.5, // the probability with which we'll sample from the DataSet in-memory storage
"storage_size": 35 // the size of the in-memory storage with respect to a single batch
},
"datasets":
[
{
"name": "voxceleb2",
"path": "/workspace/scratch/ecasanova/datasets/VoxCeleb/vox2_dev_aac/",
"meta_file_train": null,
"meta_file_val": null
},
{
"name": "voxceleb1",
"path": "/workspace/scratch/ecasanova/datasets/VoxCeleb/vox1_dev_wav/",
"meta_file_train": null,
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/fi",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/fi",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/zh-CN",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/zh-CN",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/rm-sursilv",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/rm-sursilv",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/lt",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/lt",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ka",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ka",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/sv-SE",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/sv-SE",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/pl",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/pl",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ru",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ru",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/mn",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/mn",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/nl",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/nl",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/sl",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/sl",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/es",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/es",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/pt",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/pt",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/hi",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/hi",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ja",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ja",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ia",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ia",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/br",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/br",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/id",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/id",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/dv",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/dv",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ta",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ta",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/or",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/or",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/zh-HK",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/zh-HK",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/de",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/de",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/uk",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/uk",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/en",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/en",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/fa",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/fa",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/vi",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/vi",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ab",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ab",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/sah",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/sah",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/vot",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/vot",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/fr",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/fr",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/tr",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/tr",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/lg",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/lg",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/mt",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/mt",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/rw",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/rw",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/hu",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/hu",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/rm-vallader",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/rm-vallader",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/el",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/el",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/tt",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/tt",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/zh-TW",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/zh-TW",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/et",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/et",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/fy-NL",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/fy-NL",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/cs",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/cs",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/as",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/as",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ro",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ro",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/eo",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/eo",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/pa-IN",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/pa-IN",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/th",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/th",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/it",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/it",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ga-IE",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ga-IE",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/cnh",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/cnh",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ky",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ky",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ar",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ar",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/eu",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/eu",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ca",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/ca",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/kab",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/kab",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/cy",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/cy",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/cv",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/cv",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/hsb",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/hsb",
"meta_file_train": "dev.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/lv",
"meta_file_train": "train.tsv",
"meta_file_val": null
},
{
"name": "common_voice",
"path": "/workspace/scratch/ecasanova/datasets/common-voice/cv-corpus-6.1-2020-12-11_16khz/lv",
"meta_file_train": "dev.tsv",
"meta_file_val": null
}
]
}