coqui-tts/TTS/utils/manage.py

199 lines
8.2 KiB
Python

import io
import json
import os
import zipfile
from pathlib import Path
from shutil import copyfile, rmtree
import gdown
import requests
from TTS.config import load_config
from TTS.utils.generic_utils import get_user_data_dir
class ModelManager(object):
"""Manage TTS models defined in .models.json.
It provides an interface to list and download
models defines in '.model.json'
Models are downloaded under '.TTS' folder in the user's
home path.
Args:
models_file (str): path to .model.json
"""
def __init__(self, models_file=None, output_prefix=None):
super().__init__()
if output_prefix is None:
self.output_prefix = get_user_data_dir("tts")
else:
self.output_prefix = os.path.join(output_prefix, "tts")
self.url_prefix = "https://drive.google.com/uc?id="
self.models_dict = None
if models_file is not None:
self.read_models_file(models_file)
else:
# try the default location
path = Path(__file__).parent / "../.models.json"
self.read_models_file(path)
def read_models_file(self, file_path):
"""Read .models.json as a dict
Args:
file_path (str): path to .models.json.
"""
with open(file_path, "r", encoding="utf-8") as json_file:
self.models_dict = json.load(json_file)
def list_langs(self):
print(" Name format: type/language")
for model_type in self.models_dict:
for lang in self.models_dict[model_type]:
print(f" >: {model_type}/{lang} ")
def list_datasets(self):
print(" Name format: type/language/dataset")
for model_type in self.models_dict:
for lang in self.models_dict[model_type]:
for dataset in self.models_dict[model_type][lang]:
print(f" >: {model_type}/{lang}/{dataset}")
def list_models(self):
print(" Name format: type/language/dataset/model")
models_name_list = []
model_count = 1
for model_type in self.models_dict:
for lang in self.models_dict[model_type]:
for dataset in self.models_dict[model_type][lang]:
for model in self.models_dict[model_type][lang][dataset]:
model_full_name = f"{model_type}--{lang}--{dataset}--{model}"
output_path = os.path.join(self.output_prefix, model_full_name)
if os.path.exists(output_path):
print(f" {model_count}: {model_type}/{lang}/{dataset}/{model} [already downloaded]")
else:
print(f" {model_count}: {model_type}/{lang}/{dataset}/{model}")
models_name_list.append(f"{model_type}/{lang}/{dataset}/{model}")
model_count += 1
return models_name_list
def download_model(self, model_name):
"""Download model files given the full model name.
Model name is in the format
'type/language/dataset/model'
e.g. 'tts_model/en/ljspeech/tacotron'
Every model must have the following files:
- *.pth.tar : pytorch model checkpoint file.
- config.json : model config file.
- scale_stats.npy (if exist): scale values for preprocessing.
Args:
model_name (str): model name as explained above.
TODO: support multi-speaker models
"""
# fetch model info from the dict
model_type, lang, dataset, model = model_name.split("/")
model_full_name = f"{model_type}--{lang}--{dataset}--{model}"
model_item = self.models_dict[model_type][lang][dataset][model]
# set the model specific output path
output_path = os.path.join(self.output_prefix, model_full_name)
output_model_path = os.path.join(output_path, "model_file.pth.tar")
output_config_path = os.path.join(output_path, "config.json")
if os.path.exists(output_path):
print(f" > {model_name} is already downloaded.")
else:
os.makedirs(output_path, exist_ok=True)
print(f" > Downloading model to {output_path}")
output_stats_path = os.path.join(output_path, "scale_stats.npy")
# download files to the output path
if self._check_dict_key(model_item, "github_rls_url"):
# download from github release
self._download_zip_file(model_item["github_rls_url"], output_path)
else:
# download from gdrive
self._download_gdrive_file(model_item["model_file"], output_model_path)
self._download_gdrive_file(model_item["config_file"], output_config_path)
if self._check_dict_key(model_item, "stats_file"):
self._download_gdrive_file(model_item["stats_file"], output_stats_path)
# update paths in the config.json
self._update_paths(output_path, output_config_path)
return output_model_path, output_config_path, model_item
def _update_paths(self, output_path: str, config_path: str) -> None:
"""Update paths for certain files in config.json after download.
Args:
output_path (str): local path the model is downloaded to.
config_path (str): local config.json path.
"""
output_stats_path = os.path.join(output_path, "scale_stats.npy")
output_d_vector_file_path = os.path.join(output_path, "speakers.json")
output_speaker_ids_file_path = os.path.join(output_path, "speaker_ids.json")
# update the scale_path.npy file path in the model config.json
self._update_path("audio.stats_path", output_stats_path, config_path)
# update the speakers.json file path in the model config.json to the current path
self._update_path("d_vector_file", output_d_vector_file_path, config_path)
self._update_path("model_args.d_vector_file", output_d_vector_file_path, config_path)
# update the speaker_ids.json file path in the model config.json to the current path
self._update_path("speakers_file", output_speaker_ids_file_path, config_path)
self._update_path("model_args.speakers_file", output_speaker_ids_file_path, config_path)
@staticmethod
def _update_path(field_name, new_path, config_path):
"""Update the path in the model config.json for the current environment after download"""
if os.path.exists(new_path):
config = load_config(config_path)
field_names = field_name.split(".")
if len(field_names) > 1:
# field name points to a sub-level field
sub_conf = config
for fd in field_names[:-1]:
if fd in sub_conf:
sub_conf = sub_conf[fd]
else:
return
sub_conf[field_names[-1]] = new_path
else:
# field name points to a top-level field
config[field_name] = new_path
config.save_json(config_path)
def _download_gdrive_file(self, gdrive_idx, output):
"""Download files from GDrive using their file ids"""
gdown.download(f"{self.url_prefix}{gdrive_idx}", output=output, quiet=False)
@staticmethod
def _download_zip_file(file_url, output_folder):
"""Download the github releases"""
# download the file
r = requests.get(file_url)
# extract the file
with zipfile.ZipFile(io.BytesIO(r.content)) as z:
z.extractall(output_folder)
# move the files to the outer path
for file_path in z.namelist()[1:]:
src_path = os.path.join(output_folder, file_path)
dst_path = os.path.join(output_folder, os.path.basename(file_path))
copyfile(src_path, dst_path)
# remove the extracted folder
rmtree(os.path.join(output_folder, z.namelist()[0]))
@staticmethod
def _check_dict_key(my_dict, key):
if key in my_dict.keys() and my_dict[key] is not None:
if not isinstance(key, str):
return True
if isinstance(key, str) and len(my_dict[key]) > 0:
return True
return False