coqui-tts/TTS/tts/utils/io.py

121 lines
4.8 KiB
Python

import datetime
import os
import pickle as pickle_tts
import torch
from TTS.utils.io import RenamingUnpickler
def load_checkpoint(model, checkpoint_path, amp=None, use_cuda=False, eval=False): # pylint: disable=redefined-builtin
"""Load ```TTS.tts.models``` checkpoints.
Args:
model (TTS.tts.models): model object to load the weights for.
checkpoint_path (string): checkpoint file path.
amp (apex.amp, optional): Apex amp abject to load apex related state vars. Defaults to None.
use_cuda (bool, optional): load model to GPU if True. Defaults to False.
Returns:
[type]: [description]
"""
try:
state = torch.load(checkpoint_path, map_location=torch.device("cpu"))
except ModuleNotFoundError:
pickle_tts.Unpickler = RenamingUnpickler
state = torch.load(checkpoint_path, map_location=torch.device("cpu"), pickle_module=pickle_tts)
model.load_state_dict(state["model"])
if amp and "amp" in state:
amp.load_state_dict(state["amp"])
if use_cuda:
model.cuda()
# set model stepsize
if hasattr(model.decoder, "r"):
model.decoder.set_r(state["r"])
print(" > Model r: ", state["r"])
if eval:
model.eval()
return model, state
def save_model(model, optimizer, current_step, epoch, r, output_path, characters, amp_state_dict=None, **kwargs):
"""Save ```TTS.tts.models``` states with extra fields.
Args:
model (TTS.tts.models.Model): models object to be saved.
optimizer (torch.optim.optimizers.Optimizer): model optimizer used for training.
current_step (int): current number of training steps.
epoch (int): current number of training epochs.
r (int): model reduction rate for Tacotron models.
output_path (str): output path to save the model file.
characters (list): list of characters used in the model.
amp_state_dict (state_dict, optional): Apex.amp state dict if Apex is enabled. Defaults to None.
"""
if hasattr(model, "module"):
model_state = model.module.state_dict()
else:
model_state = model.state_dict()
state = {
"model": model_state,
"optimizer": optimizer.state_dict() if optimizer is not None else None,
"step": current_step,
"epoch": epoch,
"date": datetime.date.today().strftime("%B %d, %Y"),
"r": r,
"characters": characters,
}
if amp_state_dict:
state["amp"] = amp_state_dict
state.update(kwargs)
torch.save(state, output_path)
def save_checkpoint(model, optimizer, current_step, epoch, r, output_folder, characters, **kwargs):
"""Save model checkpoint, intended for saving checkpoints at training.
Args:
model (TTS.tts.models.Model): models object to be saved.
optimizer (torch.optim.optimizers.Optimizer): model optimizer used for training.
current_step (int): current number of training steps.
epoch (int): current number of training epochs.
r (int): model reduction rate for Tacotron models.
output_path (str): output path to save the model file.
characters (list): list of characters used in the model.
"""
file_name = "checkpoint_{}.pth.tar".format(current_step)
checkpoint_path = os.path.join(output_folder, file_name)
print(" > CHECKPOINT : {}".format(checkpoint_path))
save_model(model, optimizer, current_step, epoch, r, checkpoint_path, characters, **kwargs)
def save_best_model(
target_loss, best_loss, model, optimizer, current_step, epoch, r, output_folder, characters, **kwargs
):
"""Save model checkpoint, intended for saving the best model after each epoch.
It compares the current model loss with the best loss so far and saves the
model if the current loss is better.
Args:
target_loss (float): current model loss.
best_loss (float): best loss so far.
model (TTS.tts.models.Model): models object to be saved.
optimizer (torch.optim.optimizers.Optimizer): model optimizer used for training.
current_step (int): current number of training steps.
epoch (int): current number of training epochs.
r (int): model reduction rate for Tacotron models.
output_path (str): output path to save the model file.
characters (list): list of characters used in the model.
Returns:
float: updated current best loss.
"""
if target_loss < best_loss:
file_name = "best_model.pth.tar"
checkpoint_path = os.path.join(output_folder, file_name)
print(" >> BEST MODEL : {}".format(checkpoint_path))
save_model(
model, optimizer, current_step, epoch, r, checkpoint_path, characters, model_loss=target_loss, **kwargs
)
best_loss = target_loss
return best_loss