mirror of https://github.com/coqui-ai/TTS.git
121 lines
4.8 KiB
Python
121 lines
4.8 KiB
Python
import datetime
|
|
import os
|
|
import pickle as pickle_tts
|
|
|
|
import torch
|
|
|
|
from TTS.utils.io import RenamingUnpickler
|
|
|
|
|
|
def load_checkpoint(model, checkpoint_path, amp=None, use_cuda=False, eval=False): # pylint: disable=redefined-builtin
|
|
"""Load ```TTS.tts.models``` checkpoints.
|
|
|
|
Args:
|
|
model (TTS.tts.models): model object to load the weights for.
|
|
checkpoint_path (string): checkpoint file path.
|
|
amp (apex.amp, optional): Apex amp abject to load apex related state vars. Defaults to None.
|
|
use_cuda (bool, optional): load model to GPU if True. Defaults to False.
|
|
|
|
Returns:
|
|
[type]: [description]
|
|
"""
|
|
try:
|
|
state = torch.load(checkpoint_path, map_location=torch.device("cpu"))
|
|
except ModuleNotFoundError:
|
|
pickle_tts.Unpickler = RenamingUnpickler
|
|
state = torch.load(checkpoint_path, map_location=torch.device("cpu"), pickle_module=pickle_tts)
|
|
model.load_state_dict(state["model"])
|
|
if amp and "amp" in state:
|
|
amp.load_state_dict(state["amp"])
|
|
if use_cuda:
|
|
model.cuda()
|
|
# set model stepsize
|
|
if hasattr(model.decoder, "r"):
|
|
model.decoder.set_r(state["r"])
|
|
print(" > Model r: ", state["r"])
|
|
if eval:
|
|
model.eval()
|
|
return model, state
|
|
|
|
|
|
def save_model(model, optimizer, current_step, epoch, r, output_path, characters, amp_state_dict=None, **kwargs):
|
|
"""Save ```TTS.tts.models``` states with extra fields.
|
|
|
|
Args:
|
|
model (TTS.tts.models.Model): models object to be saved.
|
|
optimizer (torch.optim.optimizers.Optimizer): model optimizer used for training.
|
|
current_step (int): current number of training steps.
|
|
epoch (int): current number of training epochs.
|
|
r (int): model reduction rate for Tacotron models.
|
|
output_path (str): output path to save the model file.
|
|
characters (list): list of characters used in the model.
|
|
amp_state_dict (state_dict, optional): Apex.amp state dict if Apex is enabled. Defaults to None.
|
|
"""
|
|
if hasattr(model, "module"):
|
|
model_state = model.module.state_dict()
|
|
else:
|
|
model_state = model.state_dict()
|
|
state = {
|
|
"model": model_state,
|
|
"optimizer": optimizer.state_dict() if optimizer is not None else None,
|
|
"step": current_step,
|
|
"epoch": epoch,
|
|
"date": datetime.date.today().strftime("%B %d, %Y"),
|
|
"r": r,
|
|
"characters": characters,
|
|
}
|
|
if amp_state_dict:
|
|
state["amp"] = amp_state_dict
|
|
state.update(kwargs)
|
|
torch.save(state, output_path)
|
|
|
|
|
|
def save_checkpoint(model, optimizer, current_step, epoch, r, output_folder, characters, **kwargs):
|
|
"""Save model checkpoint, intended for saving checkpoints at training.
|
|
|
|
Args:
|
|
model (TTS.tts.models.Model): models object to be saved.
|
|
optimizer (torch.optim.optimizers.Optimizer): model optimizer used for training.
|
|
current_step (int): current number of training steps.
|
|
epoch (int): current number of training epochs.
|
|
r (int): model reduction rate for Tacotron models.
|
|
output_path (str): output path to save the model file.
|
|
characters (list): list of characters used in the model.
|
|
"""
|
|
file_name = "checkpoint_{}.pth.tar".format(current_step)
|
|
checkpoint_path = os.path.join(output_folder, file_name)
|
|
print(" > CHECKPOINT : {}".format(checkpoint_path))
|
|
save_model(model, optimizer, current_step, epoch, r, checkpoint_path, characters, **kwargs)
|
|
|
|
|
|
def save_best_model(
|
|
target_loss, best_loss, model, optimizer, current_step, epoch, r, output_folder, characters, **kwargs
|
|
):
|
|
"""Save model checkpoint, intended for saving the best model after each epoch.
|
|
It compares the current model loss with the best loss so far and saves the
|
|
model if the current loss is better.
|
|
|
|
Args:
|
|
target_loss (float): current model loss.
|
|
best_loss (float): best loss so far.
|
|
model (TTS.tts.models.Model): models object to be saved.
|
|
optimizer (torch.optim.optimizers.Optimizer): model optimizer used for training.
|
|
current_step (int): current number of training steps.
|
|
epoch (int): current number of training epochs.
|
|
r (int): model reduction rate for Tacotron models.
|
|
output_path (str): output path to save the model file.
|
|
characters (list): list of characters used in the model.
|
|
|
|
Returns:
|
|
float: updated current best loss.
|
|
"""
|
|
if target_loss < best_loss:
|
|
file_name = "best_model.pth.tar"
|
|
checkpoint_path = os.path.join(output_folder, file_name)
|
|
print(" >> BEST MODEL : {}".format(checkpoint_path))
|
|
save_model(
|
|
model, optimizer, current_step, epoch, r, checkpoint_path, characters, model_loss=target_loss, **kwargs
|
|
)
|
|
best_loss = target_loss
|
|
return best_loss
|