mirror of https://github.com/coqui-ai/TTS.git
158 lines
5.4 KiB
Python
158 lines
5.4 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
class SELayer(nn.Module):
|
|
def __init__(self, channel, reduction=8):
|
|
super(SELayer, self).__init__()
|
|
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
|
self.fc = nn.Sequential(
|
|
nn.Linear(channel, channel // reduction),
|
|
nn.ReLU(inplace=True),
|
|
nn.Linear(channel // reduction, channel),
|
|
nn.Sigmoid()
|
|
)
|
|
|
|
def forward(self, x):
|
|
b, c, _, _ = x.size()
|
|
y = self.avg_pool(x).view(b, c)
|
|
y = self.fc(y).view(b, c, 1, 1)
|
|
return x * y
|
|
|
|
class SEBasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=8):
|
|
super(SEBasicBlock, self).__init__()
|
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(planes)
|
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1, bias=False)
|
|
self.bn2 = nn.BatchNorm2d(planes)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.se = SELayer(planes, reduction)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.relu(out)
|
|
out = self.bn1(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.se(out)
|
|
|
|
if self.downsample is not None:
|
|
residual = self.downsample(x)
|
|
|
|
out += residual
|
|
out = self.relu(out)
|
|
return out
|
|
|
|
class ResNetSpeakerEncoder(nn.Module):
|
|
"""Implementation of the model H/ASP without batch normalization in speaker embedding. This model was proposed in: https://arxiv.org/abs/2009.14153
|
|
Adapted from: https://github.com/clovaai/voxceleb_trainer
|
|
"""
|
|
def __init__(self, input_dim=64, proj_dim=512, layers=[3, 4, 6, 3], num_filters=[32, 64, 128, 256], encoder_type='ASP', log_input=False):
|
|
super(ResNetSpeakerEncoder, self).__init__()
|
|
|
|
self.encoder_type = encoder_type
|
|
self.input_dim = input_dim
|
|
self.log_input = log_input
|
|
self.conv1 = nn.Conv2d(1, num_filters[0] , kernel_size=3, stride=1, padding=1)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.bn1 = nn.BatchNorm2d(num_filters[0])
|
|
|
|
self.inplanes = num_filters[0]
|
|
self.layer1 = self.create_layer(SEBasicBlock, num_filters[0], layers[0])
|
|
self.layer2 = self.create_layer(SEBasicBlock, num_filters[1], layers[1], stride=(2, 2))
|
|
self.layer3 = self.create_layer(SEBasicBlock, num_filters[2], layers[2], stride=(2, 2))
|
|
self.layer4 = self.create_layer(SEBasicBlock, num_filters[3], layers[3], stride=(2, 2))
|
|
|
|
self.instancenorm = nn.InstanceNorm1d(input_dim)
|
|
|
|
outmap_size = int(self.input_dim/8)
|
|
|
|
self.attention = nn.Sequential(
|
|
nn.Conv1d(num_filters[3] * outmap_size, 128, kernel_size=1),
|
|
nn.ReLU(),
|
|
nn.BatchNorm1d(128),
|
|
nn.Conv1d(128, num_filters[3] * outmap_size, kernel_size=1),
|
|
nn.Softmax(dim=2),
|
|
)
|
|
|
|
if self.encoder_type == "SAP":
|
|
out_dim = num_filters[3] * outmap_size
|
|
elif self.encoder_type == "ASP":
|
|
out_dim = num_filters[3] * outmap_size * 2
|
|
else:
|
|
raise ValueError('Undefined encoder')
|
|
|
|
self.fc = nn.Linear(out_dim, proj_dim)
|
|
|
|
self._init_layers()
|
|
|
|
def _init_layers(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
def create_layer(self, block, planes, blocks, stride=1):
|
|
downsample = None
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
nn.Conv2d(self.inplanes, planes * block.expansion,
|
|
kernel_size=1, stride=stride, bias=False),
|
|
nn.BatchNorm2d(planes * block.expansion),
|
|
)
|
|
|
|
layers = []
|
|
layers.append(block(self.inplanes, planes, stride, downsample))
|
|
self.inplanes = planes * block.expansion
|
|
for i in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def new_parameter(self, *size):
|
|
out = nn.Parameter(torch.FloatTensor(*size))
|
|
nn.init.xavier_normal_(out)
|
|
return out
|
|
|
|
def forward(self, x):
|
|
x = x.transpose(1, 2)
|
|
with torch.no_grad():
|
|
with torch.cuda.amp.autocast(enabled=False):
|
|
if self.log_input: x = (x+1e-6).log()
|
|
x = self.instancenorm(x).unsqueeze(1)
|
|
|
|
x = self.conv1(x)
|
|
x = self.relu(x)
|
|
x = self.bn1(x)
|
|
|
|
x = self.layer1(x)
|
|
x = self.layer2(x)
|
|
x = self.layer3(x)
|
|
x = self.layer4(x)
|
|
|
|
x = x.reshape(x.size()[0],-1,x.size()[-1])
|
|
|
|
w = self.attention(x)
|
|
|
|
if self.encoder_type == "SAP":
|
|
x = torch.sum(x * w, dim=2)
|
|
elif self.encoder_type == "ASP":
|
|
mu = torch.sum(x * w, dim=2)
|
|
sg = torch.sqrt((torch.sum((x**2) * w, dim=2) - mu ** 2 ).clamp(min=1e-5) )
|
|
x = torch.cat((mu, sg),1)
|
|
|
|
x = x.view(x.size()[0], -1)
|
|
x = self.fc(x)
|
|
|
|
return x
|