coqui-tts/TTS/tts/layers/xtts/tokenizer.py

287 lines
8.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import json
import os
import re
import inflect
import pandas as pd
import pypinyin
import torch
from num2words import num2words
from tokenizers import Tokenizer
from unidecode import unidecode
from TTS.tts.utils.text.cleaners import english_cleaners
_inflect = inflect.engine()
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
_decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
_pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")
_dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)")
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
_number_re = re.compile(r"[0-9]+")
def _remove_commas(m):
return m.group(1).replace(",", "")
def _expand_decimal_point(m):
return m.group(1).replace(".", " point ")
def _expand_dollars(m):
match = m.group(1)
parts = match.split(".")
if len(parts) > 2:
return match + " dollars" # Unexpected format
dollars = int(parts[0]) if parts[0] else 0
cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
if dollars and cents:
dollar_unit = "dollar" if dollars == 1 else "dollars"
cent_unit = "cent" if cents == 1 else "cents"
return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit)
elif dollars:
dollar_unit = "dollar" if dollars == 1 else "dollars"
return "%s %s" % (dollars, dollar_unit)
elif cents:
cent_unit = "cent" if cents == 1 else "cents"
return "%s %s" % (cents, cent_unit)
else:
return "zero dollars"
def _expand_ordinal(m):
return _inflect.number_to_words(m.group(0))
def _expand_number(m):
num = int(m.group(0))
if num > 1000 and num < 3000:
if num == 2000:
return "two thousand"
elif num > 2000 and num < 2010:
return "two thousand " + _inflect.number_to_words(num % 100)
elif num % 100 == 0:
return _inflect.number_to_words(num // 100) + " hundred"
else:
return _inflect.number_to_words(num, andword="", zero="oh", group=2).replace(", ", " ")
else:
return _inflect.number_to_words(num, andword="")
def normalize_numbers(text):
text = re.sub(_comma_number_re, _remove_commas, text)
text = re.sub(_pounds_re, r"\1 pounds", text)
text = re.sub(_dollars_re, _expand_dollars, text)
text = re.sub(_decimal_number_re, _expand_decimal_point, text)
text = re.sub(_ordinal_re, _expand_ordinal, text)
text = re.sub(_number_re, _expand_number, text)
return text
# Regular expression matching whitespace:
_whitespace_re = re.compile(r"\s+")
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mrs", "misess"),
("mr", "mister"),
("dr", "doctor"),
("st", "saint"),
("co", "company"),
("jr", "junior"),
("maj", "major"),
("gen", "general"),
("drs", "doctors"),
("rev", "reverend"),
("lt", "lieutenant"),
("hon", "honorable"),
("sgt", "sergeant"),
("capt", "captain"),
("esq", "esquire"),
("ltd", "limited"),
("col", "colonel"),
("ft", "fort"),
]
]
def expand_abbreviations(text):
for regex, replacement in _abbreviations:
text = re.sub(regex, replacement, text)
return text
def expand_numbers(text):
return normalize_numbers(text)
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, " ", text)
def convert_to_ascii(text):
return unidecode(text)
def basic_cleaners(text):
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
text = lowercase(text)
text = collapse_whitespace(text)
text = text.replace('"', "")
return text
def expand_numbers_multilang(text, lang):
# TODO: Handle text more carefully. Currently, it just converts numbers without any context.
# Find all numbers in the input string
numbers = re.findall(r"\d+", text)
# Transliterate the numbers to text
for num in numbers:
transliterated_num = "".join(num2words(num, lang=lang))
text = text.replace(num, transliterated_num, 1)
return text
def transliteration_cleaners(text):
"""Pipeline for non-English text that transliterates to ASCII."""
text = convert_to_ascii(text)
text = lowercase(text)
text = collapse_whitespace(text)
return text
def multilingual_cleaners(text, lang):
text = lowercase(text)
text = expand_numbers_multilang(text, lang)
text = collapse_whitespace(text)
text = text.replace('"', "")
if lang == "tr":
text = text.replace("İ", "i")
text = text.replace("Ö", "ö")
text = text.replace("Ü", "ü")
return text
def english_cleaners(text):
"""Pipeline for English text, including number and abbreviation expansion."""
text = convert_to_ascii(text)
text = lowercase(text)
text = expand_numbers(text)
text = expand_abbreviations(text)
text = collapse_whitespace(text)
text = text.replace('"', "")
return text
def remove_extraneous_punctuation(word):
replacement_punctuation = {"{": "(", "}": ")", "[": "(", "]": ")", "`": "'", "": "-", "": "-", "`": "'", "ʼ": "'"}
replace = re.compile(
"|".join([re.escape(k) for k in sorted(replacement_punctuation, key=len, reverse=True)]), flags=re.DOTALL
)
word = replace.sub(lambda x: replacement_punctuation[x.group(0)], word)
# TODO: some of these are spoken ('@', '%', '+', etc). Integrate them into the cleaners.
extraneous = re.compile(r"^[@#%_=\$\^&\*\+\\]$")
word = extraneous.sub("", word)
return word
def expand_numbers(text):
return normalize_numbers(text)
def lowercase(text):
return text.lower()
_whitespace_re = re.compile(r"\s+")
def collapse_whitespace(text):
return re.sub(_whitespace_re, " ", text)
def convert_to_ascii(text):
return unidecode(text)
def basic_cleaners(text):
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
text = lowercase(text)
text = collapse_whitespace(text)
return text
def arabic_cleaners(text):
text = lowercase(text)
text = collapse_whitespace(text)
return text
def chinese_cleaners(text):
text = lowercase(text)
text = "".join(
[p[0] for p in pypinyin.pinyin(text, style=pypinyin.Style.TONE3, heteronym=False, neutral_tone_with_five=True)]
)
return text
class VoiceBpeTokenizer:
def __init__(self, vocab_file=None, preprocess=None):
self.tokenizer = None
if vocab_file is not None:
with open(vocab_file, "r", encoding="utf-8") as f:
vocab = json.load(f)
self.language = vocab["model"]["language"] if "language" in vocab["model"] else None
if preprocess is None:
self.preprocess = "pre_tokenizer" in vocab and vocab["pre_tokenizer"]
else:
self.preprocess = preprocess
self.tokenizer = Tokenizer.from_file(vocab_file)
def preprocess_text(self, txt, lang):
if lang == "ja":
import pykakasi
kks = pykakasi.kakasi()
results = kks.convert(txt)
txt = " ".join([result["kana"] for result in results])
txt = basic_cleaners(txt)
elif lang == "en":
txt = english_cleaners(txt)
elif lang == "ar":
txt = arabic_cleaners(txt)
elif lang == "zh-cn":
txt = chinese_cleaners(txt)
else:
txt = multilingual_cleaners(txt, lang)
return txt
def encode(self, txt, lang):
if self.preprocess:
txt = self.preprocess_text(txt, lang)
txt = txt.replace(" ", "[SPACE]")
return self.tokenizer.encode(txt).ids
def decode(self, seq):
if isinstance(seq, torch.Tensor):
seq = seq.cpu().numpy()
txt = self.tokenizer.decode(seq, skip_special_tokens=False).replace(" ", "")
txt = txt.replace("[SPACE]", " ")
txt = txt.replace("[STOP]", "")
txt = txt.replace("[UNK]", "")
return txt