mirror of https://github.com/coqui-ai/TTS.git
262 lines
11 KiB
Python
262 lines
11 KiB
Python
import torch
|
|
from torch import nn
|
|
|
|
from TTS.tts.layers.feed_forward.decoder import Decoder
|
|
from TTS.tts.layers.feed_forward.duration_predictor import DurationPredictor
|
|
from TTS.tts.layers.feed_forward.encoder import Encoder
|
|
from TTS.tts.layers.generic.pos_encoding import PositionalEncoding
|
|
from TTS.tts.layers.glow_tts.monotonic_align import generate_path
|
|
from TTS.tts.utils.data import sequence_mask
|
|
from TTS.tts.utils.measures import alignment_diagonal_score
|
|
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
|
|
from TTS.utils.audio import AudioProcessor
|
|
|
|
|
|
class SpeedySpeech(nn.Module):
|
|
"""Speedy Speech model
|
|
https://arxiv.org/abs/2008.03802
|
|
|
|
Encoder -> DurationPredictor -> Decoder
|
|
|
|
This model is able to achieve a reasonable performance with only
|
|
~3M model parameters and convolutional layers.
|
|
|
|
This model requires precomputed phoneme durations to train a duration predictor. At inference
|
|
it only uses the duration predictor to compute durations and expand encoder outputs respectively.
|
|
|
|
Args:
|
|
num_chars (int): number of unique input to characters
|
|
out_channels (int): number of output tensor channels. It is equal to the expected spectrogram size.
|
|
hidden_channels (int): number of channels in all the model layers.
|
|
positional_encoding (bool, optional): enable/disable Positional encoding on encoder outputs. Defaults to True.
|
|
length_scale (int, optional): coefficient to set the speech speed. <1 slower, >1 faster. Defaults to 1.
|
|
encoder_type (str, optional): set the encoder type. Defaults to 'residual_conv_bn'.
|
|
encoder_params (dict, optional): set encoder parameters depending on 'encoder_type'. Defaults to { "kernel_size": 4, "dilations": 4 * [1, 2, 4] + [1], "num_conv_blocks": 2, "num_res_blocks": 13 }.
|
|
decoder_type (str, optional): decoder type. Defaults to 'residual_conv_bn'.
|
|
decoder_params (dict, optional): set decoder parameters depending on 'decoder_type'. Defaults to { "kernel_size": 4, "dilations": 4 * [1, 2, 4, 8] + [1], "num_conv_blocks": 2, "num_res_blocks": 17 }.
|
|
num_speakers (int, optional): number of speakers for multi-speaker training. Defaults to 0.
|
|
external_c (bool, optional): enable external speaker embeddings. Defaults to False.
|
|
c_in_channels (int, optional): number of channels in speaker embedding vectors. Defaults to 0.
|
|
"""
|
|
|
|
# pylint: disable=dangerous-default-value
|
|
|
|
def __init__(
|
|
self,
|
|
num_chars,
|
|
out_channels,
|
|
hidden_channels,
|
|
positional_encoding=True,
|
|
length_scale=1,
|
|
encoder_type="residual_conv_bn",
|
|
encoder_params={"kernel_size": 4, "dilations": 4 * [1, 2, 4] + [1], "num_conv_blocks": 2, "num_res_blocks": 13},
|
|
decoder_type="residual_conv_bn",
|
|
decoder_params={
|
|
"kernel_size": 4,
|
|
"dilations": 4 * [1, 2, 4, 8] + [1],
|
|
"num_conv_blocks": 2,
|
|
"num_res_blocks": 17,
|
|
},
|
|
num_speakers=0,
|
|
external_c=False,
|
|
c_in_channels=0,
|
|
):
|
|
|
|
super().__init__()
|
|
self.length_scale = float(length_scale) if isinstance(length_scale, int) else length_scale
|
|
self.emb = nn.Embedding(num_chars, hidden_channels)
|
|
self.encoder = Encoder(hidden_channels, hidden_channels, encoder_type, encoder_params, c_in_channels)
|
|
if positional_encoding:
|
|
self.pos_encoder = PositionalEncoding(hidden_channels)
|
|
self.decoder = Decoder(out_channels, hidden_channels, decoder_type, decoder_params)
|
|
self.duration_predictor = DurationPredictor(hidden_channels + c_in_channels)
|
|
|
|
if num_speakers > 1 and not external_c:
|
|
# speaker embedding layer
|
|
self.emb_g = nn.Embedding(num_speakers, c_in_channels)
|
|
nn.init.uniform_(self.emb_g.weight, -0.1, 0.1)
|
|
|
|
if c_in_channels > 0 and c_in_channels != hidden_channels:
|
|
self.proj_g = nn.Conv1d(c_in_channels, hidden_channels, 1)
|
|
|
|
@staticmethod
|
|
def expand_encoder_outputs(en, dr, x_mask, y_mask):
|
|
"""Generate attention alignment map from durations and
|
|
expand encoder outputs
|
|
|
|
Example:
|
|
encoder output: [a,b,c,d]
|
|
durations: [1, 3, 2, 1]
|
|
|
|
expanded: [a, b, b, b, c, c, d]
|
|
attention map: [[0, 0, 0, 0, 0, 0, 1],
|
|
[0, 0, 0, 0, 1, 1, 0],
|
|
[0, 1, 1, 1, 0, 0, 0],
|
|
[1, 0, 0, 0, 0, 0, 0]]
|
|
"""
|
|
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
|
|
attn = generate_path(dr, attn_mask.squeeze(1)).to(en.dtype)
|
|
o_en_ex = torch.matmul(attn.squeeze(1).transpose(1, 2), en.transpose(1, 2)).transpose(1, 2)
|
|
return o_en_ex, attn
|
|
|
|
def format_durations(self, o_dr_log, x_mask):
|
|
o_dr = (torch.exp(o_dr_log) - 1) * x_mask * self.length_scale
|
|
o_dr[o_dr < 1] = 1.0
|
|
o_dr = torch.round(o_dr)
|
|
return o_dr
|
|
|
|
@staticmethod
|
|
def _concat_speaker_embedding(o_en, g):
|
|
g_exp = g.expand(-1, -1, o_en.size(-1)) # [B, C, T_en]
|
|
o_en = torch.cat([o_en, g_exp], 1)
|
|
return o_en
|
|
|
|
def _sum_speaker_embedding(self, x, g):
|
|
# project g to decoder dim.
|
|
if hasattr(self, "proj_g"):
|
|
g = self.proj_g(g)
|
|
return x + g
|
|
|
|
def _forward_encoder(self, x, x_lengths, g=None):
|
|
if hasattr(self, "emb_g"):
|
|
g = nn.functional.normalize(self.emb_g(g)) # [B, C, 1]
|
|
|
|
if g is not None:
|
|
g = g.unsqueeze(-1)
|
|
|
|
# [B, T, C]
|
|
x_emb = self.emb(x)
|
|
# [B, C, T]
|
|
x_emb = torch.transpose(x_emb, 1, -1)
|
|
|
|
# compute sequence masks
|
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.shape[1]), 1).to(x.dtype)
|
|
|
|
# encoder pass
|
|
o_en = self.encoder(x_emb, x_mask)
|
|
|
|
# speaker conditioning for duration predictor
|
|
if g is not None:
|
|
o_en_dp = self._concat_speaker_embedding(o_en, g)
|
|
else:
|
|
o_en_dp = o_en
|
|
return o_en, o_en_dp, x_mask, g
|
|
|
|
def _forward_decoder(self, o_en, o_en_dp, dr, x_mask, y_lengths, g):
|
|
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en_dp.dtype)
|
|
# expand o_en with durations
|
|
o_en_ex, attn = self.expand_encoder_outputs(o_en, dr, x_mask, y_mask)
|
|
# positional encoding
|
|
if hasattr(self, "pos_encoder"):
|
|
o_en_ex = self.pos_encoder(o_en_ex, y_mask)
|
|
# speaker embedding
|
|
if g is not None:
|
|
o_en_ex = self._sum_speaker_embedding(o_en_ex, g)
|
|
# decoder pass
|
|
o_de = self.decoder(o_en_ex, y_mask, g=g)
|
|
return o_de, attn.transpose(1, 2)
|
|
|
|
def forward(
|
|
self, x, x_lengths, y_lengths, dr, cond_input={"x_vectors": None, "speaker_ids": None}
|
|
): # pylint: disable=unused-argument
|
|
"""
|
|
TODO: speaker embedding for speaker_ids
|
|
Shapes:
|
|
x: [B, T_max]
|
|
x_lengths: [B]
|
|
y_lengths: [B]
|
|
dr: [B, T_max]
|
|
g: [B, C]
|
|
"""
|
|
g = cond_input["x_vectors"] if "x_vectors" in cond_input else None
|
|
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
|
|
o_dr_log = self.duration_predictor(o_en_dp.detach(), x_mask)
|
|
o_de, attn = self._forward_decoder(o_en, o_en_dp, dr, x_mask, y_lengths, g=g)
|
|
outputs = {"model_outputs": o_de.transpose(1, 2), "durations_log": o_dr_log.squeeze(1), "alignments": attn}
|
|
return outputs
|
|
|
|
def inference(self, x, cond_input={"x_vectors": None, "speaker_ids": None}): # pylint: disable=unused-argument
|
|
"""
|
|
Shapes:
|
|
x: [B, T_max]
|
|
x_lengths: [B]
|
|
g: [B, C]
|
|
"""
|
|
g = cond_input["x_vectors"] if "x_vectors" in cond_input else None
|
|
x_lengths = torch.tensor(x.shape[1:2]).to(x.device) # pylint: disable=not-callable
|
|
# input sequence should be greated than the max convolution size
|
|
inference_padding = 5
|
|
if x.shape[1] < 13:
|
|
inference_padding += 13 - x.shape[1]
|
|
# pad input to prevent dropping the last word
|
|
x = torch.nn.functional.pad(x, pad=(0, inference_padding), mode="constant", value=0)
|
|
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
|
|
# duration predictor pass
|
|
o_dr_log = self.duration_predictor(o_en_dp.detach(), x_mask)
|
|
o_dr = self.format_durations(o_dr_log, x_mask).squeeze(1)
|
|
y_lengths = o_dr.sum(1)
|
|
o_de, attn = self._forward_decoder(o_en, o_en_dp, o_dr, x_mask, y_lengths, g=g)
|
|
outputs = {"model_outputs": o_de.transpose(1, 2), "alignments": attn, "durations_log": None}
|
|
return outputs
|
|
|
|
def train_step(self, batch: dict, criterion: nn.Module):
|
|
text_input = batch["text_input"]
|
|
text_lengths = batch["text_lengths"]
|
|
mel_input = batch["mel_input"]
|
|
mel_lengths = batch["mel_lengths"]
|
|
x_vectors = batch["x_vectors"]
|
|
speaker_ids = batch["speaker_ids"]
|
|
durations = batch["durations"]
|
|
|
|
cond_input = {"x_vectors": x_vectors, "speaker_ids": speaker_ids}
|
|
outputs = self.forward(text_input, text_lengths, mel_lengths, durations, cond_input)
|
|
|
|
# compute loss
|
|
loss_dict = criterion(
|
|
outputs["model_outputs"],
|
|
mel_input,
|
|
mel_lengths,
|
|
outputs["durations_log"],
|
|
torch.log(1 + durations),
|
|
text_lengths,
|
|
)
|
|
|
|
# compute alignment error (the lower the better )
|
|
align_error = 1 - alignment_diagonal_score(outputs["alignments"], binary=True)
|
|
loss_dict["align_error"] = align_error
|
|
return outputs, loss_dict
|
|
|
|
def train_log(self, ap: AudioProcessor, batch: dict, outputs: dict): # pylint: disable=no-self-use
|
|
model_outputs = outputs["model_outputs"]
|
|
alignments = outputs["alignments"]
|
|
mel_input = batch["mel_input"]
|
|
|
|
pred_spec = model_outputs[0].data.cpu().numpy()
|
|
gt_spec = mel_input[0].data.cpu().numpy()
|
|
align_img = alignments[0].data.cpu().numpy()
|
|
|
|
figures = {
|
|
"prediction": plot_spectrogram(pred_spec, ap, output_fig=False),
|
|
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
|
|
"alignment": plot_alignment(align_img, output_fig=False),
|
|
}
|
|
|
|
# Sample audio
|
|
train_audio = ap.inv_melspectrogram(pred_spec.T)
|
|
return figures, train_audio
|
|
|
|
def eval_step(self, batch: dict, criterion: nn.Module):
|
|
return self.train_step(batch, criterion)
|
|
|
|
def eval_log(self, ap: AudioProcessor, batch: dict, outputs: dict):
|
|
return self.train_log(ap, batch, outputs)
|
|
|
|
def load_checkpoint(
|
|
self, config, checkpoint_path, eval=False
|
|
): # pylint: disable=unused-argument, redefined-builtin
|
|
state = torch.load(checkpoint_path, map_location=torch.device("cpu"))
|
|
self.load_state_dict(state["model"])
|
|
if eval:
|
|
self.eval()
|
|
assert not self.training
|