coqui-tts/TTS/vocoder/models/hifigan_mpd_discriminator.py

52 lines
1.6 KiB
Python

from torch import nn
import torch.nn.functional as F
class PeriodDiscriminator(nn.Module):
def __init__(self, period):
super(PeriodDiscriminator, self).__init__()
layer = []
self.period = period
inp = 1
for l in range(4):
out = int(2 ** (5 + l + 1))
layer += [
nn.utils.weight_norm(nn.Conv2d(inp, out, kernel_size=(5, 1), stride=(3, 1))),
nn.LeakyReLU(0.2)
]
inp = out
self.layer = nn.Sequential(*layer)
self.output = nn.Sequential(
nn.utils.weight_norm(nn.Conv2d(out, 1024, kernel_size=(5, 1))),
nn.LeakyReLU(0.2),
nn.utils.weight_norm(nn.Conv2d(1024, 1, kernel_size=(3, 1)))
)
def forward(self, x):
batch_size = x.shape[0]
pad = self.period - (x.shape[-1] % self.period)
x = F.pad(x, (0, pad), "reflect")
y = x.view(batch_size, -1, self.period).contiguous()
y = y.unsqueeze(1)
out1 = self.layer(y)
return self.output(out1)
class MPD(nn.Module):
def __init__(self, periods=[2, 3, 5, 7, 11], segment_length=16000):
super(MPD, self).__init__()
self.mpd1 = PeriodDiscriminator(periods[0])
self.mpd2 = PeriodDiscriminator(periods[1])
self.mpd3 = PeriodDiscriminator(periods[2])
self.mpd4 = PeriodDiscriminator(periods[3])
self.mpd5 = PeriodDiscriminator(periods[4])
def forward(self, x):
out1 = self.mpd1(x)
out2 = self.mpd2(x)
out3 = self.mpd3(x)
out4 = self.mpd4(x)
out5 = self.mpd5(x)
return out1, out2, out3, out4, out5