mirror of https://github.com/coqui-ai/TTS.git
767 lines
27 KiB
Python
767 lines
27 KiB
Python
from typing import Dict, Tuple
|
|
|
|
import librosa
|
|
import numpy as np
|
|
import scipy.io.wavfile
|
|
import scipy.signal
|
|
import soundfile as sf
|
|
import torch
|
|
from torch import nn
|
|
|
|
from TTS.tts.utils.data import StandardScaler
|
|
|
|
# import pyworld as pw
|
|
|
|
|
|
class TorchSTFT(nn.Module): # pylint: disable=abstract-method
|
|
"""Some of the audio processing funtions using Torch for faster batch processing.
|
|
|
|
TODO: Merge this with audio.py
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
n_fft,
|
|
hop_length,
|
|
win_length,
|
|
pad_wav=False,
|
|
window="hann_window",
|
|
sample_rate=None,
|
|
mel_fmin=0,
|
|
mel_fmax=None,
|
|
n_mels=80,
|
|
use_mel=False,
|
|
do_amp_to_db=False,
|
|
spec_gain=1.0,
|
|
):
|
|
super().__init__()
|
|
self.n_fft = n_fft
|
|
self.hop_length = hop_length
|
|
self.win_length = win_length
|
|
self.pad_wav = pad_wav
|
|
self.sample_rate = sample_rate
|
|
self.mel_fmin = mel_fmin
|
|
self.mel_fmax = mel_fmax
|
|
self.n_mels = n_mels
|
|
self.use_mel = use_mel
|
|
self.do_amp_to_db = do_amp_to_db
|
|
self.spec_gain = spec_gain
|
|
self.window = nn.Parameter(getattr(torch, window)(win_length), requires_grad=False)
|
|
self.mel_basis = None
|
|
if use_mel:
|
|
self._build_mel_basis()
|
|
|
|
def __call__(self, x):
|
|
"""Compute spectrogram frames by torch based stft.
|
|
|
|
Args:
|
|
x (Tensor): input waveform
|
|
|
|
Returns:
|
|
Tensor: spectrogram frames.
|
|
|
|
Shapes:
|
|
x: [B x T] or [:math:`[B, 1, T]`]
|
|
"""
|
|
if x.ndim == 2:
|
|
x = x.unsqueeze(1)
|
|
if self.pad_wav:
|
|
padding = int((self.n_fft - self.hop_length) / 2)
|
|
x = torch.nn.functional.pad(x, (padding, padding), mode="reflect")
|
|
# B x D x T x 2
|
|
o = torch.stft(
|
|
x.squeeze(1),
|
|
self.n_fft,
|
|
self.hop_length,
|
|
self.win_length,
|
|
self.window,
|
|
center=True,
|
|
pad_mode="reflect", # compatible with audio.py
|
|
normalized=False,
|
|
onesided=True,
|
|
return_complex=False,
|
|
)
|
|
M = o[:, :, :, 0]
|
|
P = o[:, :, :, 1]
|
|
S = torch.sqrt(torch.clamp(M ** 2 + P ** 2, min=1e-8))
|
|
if self.use_mel:
|
|
S = torch.matmul(self.mel_basis.to(x), S)
|
|
if self.do_amp_to_db:
|
|
S = self._amp_to_db(S, spec_gain=self.spec_gain)
|
|
return S
|
|
|
|
def _build_mel_basis(self):
|
|
mel_basis = librosa.filters.mel(
|
|
self.sample_rate, self.n_fft, n_mels=self.n_mels, fmin=self.mel_fmin, fmax=self.mel_fmax
|
|
)
|
|
self.mel_basis = torch.from_numpy(mel_basis).float()
|
|
|
|
@staticmethod
|
|
def _amp_to_db(x, spec_gain=1.0):
|
|
return torch.log(torch.clamp(x, min=1e-5) * spec_gain)
|
|
|
|
@staticmethod
|
|
def _db_to_amp(x, spec_gain=1.0):
|
|
return torch.exp(x) / spec_gain
|
|
|
|
|
|
# pylint: disable=too-many-public-methods
|
|
class AudioProcessor(object):
|
|
"""Audio Processor for TTS used by all the data pipelines.
|
|
|
|
Note:
|
|
All the class arguments are set to default values to enable a flexible initialization
|
|
of the class with the model config. They are not meaningful for all the arguments.
|
|
|
|
Args:
|
|
sample_rate (int, optional):
|
|
target audio sampling rate. Defaults to None.
|
|
|
|
resample (bool, optional):
|
|
enable/disable resampling of the audio clips when the target sampling rate does not match the original sampling rate. Defaults to False.
|
|
|
|
num_mels (int, optional):
|
|
number of melspectrogram dimensions. Defaults to None.
|
|
|
|
log_func (int, optional):
|
|
log exponent used for converting spectrogram aplitude to DB.
|
|
|
|
min_level_db (int, optional):
|
|
minimum db threshold for the computed melspectrograms. Defaults to None.
|
|
|
|
frame_shift_ms (int, optional):
|
|
milliseconds of frames between STFT columns. Defaults to None.
|
|
|
|
frame_length_ms (int, optional):
|
|
milliseconds of STFT window length. Defaults to None.
|
|
|
|
hop_length (int, optional):
|
|
number of frames between STFT columns. Used if ```frame_shift_ms``` is None. Defaults to None.
|
|
|
|
win_length (int, optional):
|
|
STFT window length. Used if ```frame_length_ms``` is None. Defaults to None.
|
|
|
|
ref_level_db (int, optional):
|
|
reference DB level to avoid background noise. In general <20DB corresponds to the air noise. Defaults to None.
|
|
|
|
fft_size (int, optional):
|
|
FFT window size for STFT. Defaults to 1024.
|
|
|
|
power (int, optional):
|
|
Exponent value applied to the spectrogram before GriffinLim. Defaults to None.
|
|
|
|
preemphasis (float, optional):
|
|
Preemphasis coefficient. Preemphasis is disabled if == 0.0. Defaults to 0.0.
|
|
|
|
signal_norm (bool, optional):
|
|
enable/disable signal normalization. Defaults to None.
|
|
|
|
symmetric_norm (bool, optional):
|
|
enable/disable symmetric normalization. If set True normalization is performed in the range [-k, k] else [0, k], Defaults to None.
|
|
|
|
max_norm (float, optional):
|
|
```k``` defining the normalization range. Defaults to None.
|
|
|
|
mel_fmin (int, optional):
|
|
minimum filter frequency for computing melspectrograms. Defaults to None.
|
|
|
|
mel_fmax (int, optional):
|
|
maximum filter frequency for computing melspectrograms.. Defaults to None.
|
|
|
|
spec_gain (int, optional):
|
|
gain applied when converting amplitude to DB. Defaults to 20.
|
|
|
|
stft_pad_mode (str, optional):
|
|
Padding mode for STFT. Defaults to 'reflect'.
|
|
|
|
clip_norm (bool, optional):
|
|
enable/disable clipping the our of range values in the normalized audio signal. Defaults to True.
|
|
|
|
griffin_lim_iters (int, optional):
|
|
Number of GriffinLim iterations. Defaults to None.
|
|
|
|
do_trim_silence (bool, optional):
|
|
enable/disable silence trimming when loading the audio signal. Defaults to False.
|
|
|
|
trim_db (int, optional):
|
|
DB threshold used for silence trimming. Defaults to 60.
|
|
|
|
do_sound_norm (bool, optional):
|
|
enable/disable signal normalization. Defaults to False.
|
|
|
|
do_amp_to_db_linear (bool, optional):
|
|
enable/disable amplitude to dB conversion of linear spectrograms. Defaults to True.
|
|
|
|
do_amp_to_db_mel (bool, optional):
|
|
enable/disable amplitude to dB conversion of mel spectrograms. Defaults to True.
|
|
|
|
stats_path (str, optional):
|
|
Path to the computed stats file. Defaults to None.
|
|
|
|
verbose (bool, optional):
|
|
enable/disable logging. Defaults to True.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
sample_rate=None,
|
|
resample=False,
|
|
num_mels=None,
|
|
log_func="np.log10",
|
|
min_level_db=None,
|
|
frame_shift_ms=None,
|
|
frame_length_ms=None,
|
|
hop_length=None,
|
|
win_length=None,
|
|
ref_level_db=None,
|
|
fft_size=1024,
|
|
power=None,
|
|
preemphasis=0.0,
|
|
signal_norm=None,
|
|
symmetric_norm=None,
|
|
max_norm=None,
|
|
mel_fmin=None,
|
|
mel_fmax=None,
|
|
spec_gain=20,
|
|
stft_pad_mode="reflect",
|
|
clip_norm=True,
|
|
griffin_lim_iters=None,
|
|
do_trim_silence=False,
|
|
trim_db=60,
|
|
do_sound_norm=False,
|
|
do_amp_to_db_linear=True,
|
|
do_amp_to_db_mel=True,
|
|
stats_path=None,
|
|
verbose=True,
|
|
**_,
|
|
):
|
|
|
|
# setup class attributed
|
|
self.sample_rate = sample_rate
|
|
self.resample = resample
|
|
self.num_mels = num_mels
|
|
self.log_func = log_func
|
|
self.min_level_db = min_level_db or 0
|
|
self.frame_shift_ms = frame_shift_ms
|
|
self.frame_length_ms = frame_length_ms
|
|
self.ref_level_db = ref_level_db
|
|
self.fft_size = fft_size
|
|
self.power = power
|
|
self.preemphasis = preemphasis
|
|
self.griffin_lim_iters = griffin_lim_iters
|
|
self.signal_norm = signal_norm
|
|
self.symmetric_norm = symmetric_norm
|
|
self.mel_fmin = mel_fmin or 0
|
|
self.mel_fmax = mel_fmax
|
|
self.spec_gain = float(spec_gain)
|
|
self.stft_pad_mode = stft_pad_mode
|
|
self.max_norm = 1.0 if max_norm is None else float(max_norm)
|
|
self.clip_norm = clip_norm
|
|
self.do_trim_silence = do_trim_silence
|
|
self.trim_db = trim_db
|
|
self.do_sound_norm = do_sound_norm
|
|
self.do_amp_to_db_linear = do_amp_to_db_linear
|
|
self.do_amp_to_db_mel = do_amp_to_db_mel
|
|
self.stats_path = stats_path
|
|
# setup exp_func for db to amp conversion
|
|
if log_func == "np.log":
|
|
self.base = np.e
|
|
elif log_func == "np.log10":
|
|
self.base = 10
|
|
else:
|
|
raise ValueError(" [!] unknown `log_func` value.")
|
|
# setup stft parameters
|
|
if hop_length is None:
|
|
# compute stft parameters from given time values
|
|
self.hop_length, self.win_length = self._stft_parameters()
|
|
else:
|
|
# use stft parameters from config file
|
|
self.hop_length = hop_length
|
|
self.win_length = win_length
|
|
assert min_level_db != 0.0, " [!] min_level_db is 0"
|
|
assert self.win_length <= self.fft_size, " [!] win_length cannot be larger than fft_size"
|
|
members = vars(self)
|
|
if verbose:
|
|
print(" > Setting up Audio Processor...")
|
|
for key, value in members.items():
|
|
print(" | > {}:{}".format(key, value))
|
|
# create spectrogram utils
|
|
self.mel_basis = self._build_mel_basis()
|
|
self.inv_mel_basis = np.linalg.pinv(self._build_mel_basis())
|
|
# setup scaler
|
|
if stats_path and signal_norm:
|
|
mel_mean, mel_std, linear_mean, linear_std, _ = self.load_stats(stats_path)
|
|
self.setup_scaler(mel_mean, mel_std, linear_mean, linear_std)
|
|
self.signal_norm = True
|
|
self.max_norm = None
|
|
self.clip_norm = None
|
|
self.symmetric_norm = None
|
|
|
|
### setting up the parameters ###
|
|
def _build_mel_basis(
|
|
self,
|
|
) -> np.ndarray:
|
|
"""Build melspectrogram basis.
|
|
|
|
Returns:
|
|
np.ndarray: melspectrogram basis.
|
|
"""
|
|
if self.mel_fmax is not None:
|
|
assert self.mel_fmax <= self.sample_rate // 2
|
|
return librosa.filters.mel(
|
|
self.sample_rate, self.fft_size, n_mels=self.num_mels, fmin=self.mel_fmin, fmax=self.mel_fmax
|
|
)
|
|
|
|
def _stft_parameters(
|
|
self,
|
|
) -> Tuple[int, int]:
|
|
"""Compute the real STFT parameters from the time values.
|
|
|
|
Returns:
|
|
Tuple[int, int]: hop length and window length for STFT.
|
|
"""
|
|
factor = self.frame_length_ms / self.frame_shift_ms
|
|
assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms"
|
|
hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate)
|
|
win_length = int(hop_length * factor)
|
|
return hop_length, win_length
|
|
|
|
### normalization ###
|
|
def normalize(self, S: np.ndarray) -> np.ndarray:
|
|
"""Normalize values into `[0, self.max_norm]` or `[-self.max_norm, self.max_norm]`
|
|
|
|
Args:
|
|
S (np.ndarray): Spectrogram to normalize.
|
|
|
|
Raises:
|
|
RuntimeError: Mean and variance is computed from incompatible parameters.
|
|
|
|
Returns:
|
|
np.ndarray: Normalized spectrogram.
|
|
"""
|
|
# pylint: disable=no-else-return
|
|
S = S.copy()
|
|
if self.signal_norm:
|
|
# mean-var scaling
|
|
if hasattr(self, "mel_scaler"):
|
|
if S.shape[0] == self.num_mels:
|
|
return self.mel_scaler.transform(S.T).T
|
|
elif S.shape[0] == self.fft_size / 2:
|
|
return self.linear_scaler.transform(S.T).T
|
|
else:
|
|
raise RuntimeError(" [!] Mean-Var stats does not match the given feature dimensions.")
|
|
# range normalization
|
|
S -= self.ref_level_db # discard certain range of DB assuming it is air noise
|
|
S_norm = (S - self.min_level_db) / (-self.min_level_db)
|
|
if self.symmetric_norm:
|
|
S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm
|
|
if self.clip_norm:
|
|
S_norm = np.clip(
|
|
S_norm, -self.max_norm, self.max_norm # pylint: disable=invalid-unary-operand-type
|
|
)
|
|
return S_norm
|
|
else:
|
|
S_norm = self.max_norm * S_norm
|
|
if self.clip_norm:
|
|
S_norm = np.clip(S_norm, 0, self.max_norm)
|
|
return S_norm
|
|
else:
|
|
return S
|
|
|
|
def denormalize(self, S: np.ndarray) -> np.ndarray:
|
|
"""Denormalize spectrogram values.
|
|
|
|
Args:
|
|
S (np.ndarray): Spectrogram to denormalize.
|
|
|
|
Raises:
|
|
RuntimeError: Mean and variance are incompatible.
|
|
|
|
Returns:
|
|
np.ndarray: Denormalized spectrogram.
|
|
"""
|
|
# pylint: disable=no-else-return
|
|
S_denorm = S.copy()
|
|
if self.signal_norm:
|
|
# mean-var scaling
|
|
if hasattr(self, "mel_scaler"):
|
|
if S_denorm.shape[0] == self.num_mels:
|
|
return self.mel_scaler.inverse_transform(S_denorm.T).T
|
|
elif S_denorm.shape[0] == self.fft_size / 2:
|
|
return self.linear_scaler.inverse_transform(S_denorm.T).T
|
|
else:
|
|
raise RuntimeError(" [!] Mean-Var stats does not match the given feature dimensions.")
|
|
if self.symmetric_norm:
|
|
if self.clip_norm:
|
|
S_denorm = np.clip(
|
|
S_denorm, -self.max_norm, self.max_norm # pylint: disable=invalid-unary-operand-type
|
|
)
|
|
S_denorm = ((S_denorm + self.max_norm) * -self.min_level_db / (2 * self.max_norm)) + self.min_level_db
|
|
return S_denorm + self.ref_level_db
|
|
else:
|
|
if self.clip_norm:
|
|
S_denorm = np.clip(S_denorm, 0, self.max_norm)
|
|
S_denorm = (S_denorm * -self.min_level_db / self.max_norm) + self.min_level_db
|
|
return S_denorm + self.ref_level_db
|
|
else:
|
|
return S_denorm
|
|
|
|
### Mean-STD scaling ###
|
|
def load_stats(self, stats_path: str) -> Tuple[np.array, np.array, np.array, np.array, Dict]:
|
|
"""Loading mean and variance statistics from a `npy` file.
|
|
|
|
Args:
|
|
stats_path (str): Path to the `npy` file containing
|
|
|
|
Returns:
|
|
Tuple[np.array, np.array, np.array, np.array, Dict]: loaded statistics and the config used to
|
|
compute them.
|
|
"""
|
|
stats = np.load(stats_path, allow_pickle=True).item() # pylint: disable=unexpected-keyword-arg
|
|
mel_mean = stats["mel_mean"]
|
|
mel_std = stats["mel_std"]
|
|
linear_mean = stats["linear_mean"]
|
|
linear_std = stats["linear_std"]
|
|
stats_config = stats["audio_config"]
|
|
# check all audio parameters used for computing stats
|
|
skip_parameters = ["griffin_lim_iters", "stats_path", "do_trim_silence", "ref_level_db", "power"]
|
|
for key in stats_config.keys():
|
|
if key in skip_parameters:
|
|
continue
|
|
if key not in ["sample_rate", "trim_db"]:
|
|
assert (
|
|
stats_config[key] == self.__dict__[key]
|
|
), f" [!] Audio param {key} does not match the value used for computing mean-var stats. {stats_config[key]} vs {self.__dict__[key]}"
|
|
return mel_mean, mel_std, linear_mean, linear_std, stats_config
|
|
|
|
# pylint: disable=attribute-defined-outside-init
|
|
def setup_scaler(
|
|
self, mel_mean: np.ndarray, mel_std: np.ndarray, linear_mean: np.ndarray, linear_std: np.ndarray
|
|
) -> None:
|
|
"""Initialize scaler objects used in mean-std normalization.
|
|
|
|
Args:
|
|
mel_mean (np.ndarray): Mean for melspectrograms.
|
|
mel_std (np.ndarray): STD for melspectrograms.
|
|
linear_mean (np.ndarray): Mean for full scale spectrograms.
|
|
linear_std (np.ndarray): STD for full scale spectrograms.
|
|
"""
|
|
self.mel_scaler = StandardScaler()
|
|
self.mel_scaler.set_stats(mel_mean, mel_std)
|
|
self.linear_scaler = StandardScaler()
|
|
self.linear_scaler.set_stats(linear_mean, linear_std)
|
|
|
|
### DB and AMP conversion ###
|
|
# pylint: disable=no-self-use
|
|
def _amp_to_db(self, x: np.ndarray) -> np.ndarray:
|
|
"""Convert amplitude values to decibels.
|
|
|
|
Args:
|
|
x (np.ndarray): Amplitude spectrogram.
|
|
|
|
Returns:
|
|
np.ndarray: Decibels spectrogram.
|
|
"""
|
|
return self.spec_gain * _log(np.maximum(1e-5, x), self.base)
|
|
|
|
# pylint: disable=no-self-use
|
|
def _db_to_amp(self, x: np.ndarray) -> np.ndarray:
|
|
"""Convert decibels spectrogram to amplitude spectrogram.
|
|
|
|
Args:
|
|
x (np.ndarray): Decibels spectrogram.
|
|
|
|
Returns:
|
|
np.ndarray: Amplitude spectrogram.
|
|
"""
|
|
return _exp(x / self.spec_gain, self.base)
|
|
|
|
### Preemphasis ###
|
|
def apply_preemphasis(self, x: np.ndarray) -> np.ndarray:
|
|
"""Apply pre-emphasis to the audio signal. Useful to reduce the correlation between neighbouring signal values.
|
|
|
|
Args:
|
|
x (np.ndarray): Audio signal.
|
|
|
|
Raises:
|
|
RuntimeError: Preemphasis coeff is set to 0.
|
|
|
|
Returns:
|
|
np.ndarray: Decorrelated audio signal.
|
|
"""
|
|
if self.preemphasis == 0:
|
|
raise RuntimeError(" [!] Preemphasis is set 0.0.")
|
|
return scipy.signal.lfilter([1, -self.preemphasis], [1], x)
|
|
|
|
def apply_inv_preemphasis(self, x: np.ndarray) -> np.ndarray:
|
|
"""Reverse pre-emphasis."""
|
|
if self.preemphasis == 0:
|
|
raise RuntimeError(" [!] Preemphasis is set 0.0.")
|
|
return scipy.signal.lfilter([1], [1, -self.preemphasis], x)
|
|
|
|
### SPECTROGRAMs ###
|
|
def _linear_to_mel(self, spectrogram: np.ndarray) -> np.ndarray:
|
|
"""Project a full scale spectrogram to a melspectrogram.
|
|
|
|
Args:
|
|
spectrogram (np.ndarray): Full scale spectrogram.
|
|
|
|
Returns:
|
|
np.ndarray: Melspectrogram
|
|
"""
|
|
return np.dot(self.mel_basis, spectrogram)
|
|
|
|
def _mel_to_linear(self, mel_spec: np.ndarray) -> np.ndarray:
|
|
"""Convert a melspectrogram to full scale spectrogram."""
|
|
return np.maximum(1e-10, np.dot(self.inv_mel_basis, mel_spec))
|
|
|
|
def spectrogram(self, y: np.ndarray) -> np.ndarray:
|
|
"""Compute a spectrogram from a waveform.
|
|
|
|
Args:
|
|
y (np.ndarray): Waveform.
|
|
|
|
Returns:
|
|
np.ndarray: Spectrogram.
|
|
"""
|
|
if self.preemphasis != 0:
|
|
D = self._stft(self.apply_preemphasis(y))
|
|
else:
|
|
D = self._stft(y)
|
|
if self.do_amp_to_db_linear:
|
|
S = self._amp_to_db(np.abs(D))
|
|
else:
|
|
S = np.abs(D)
|
|
return self.normalize(S).astype(np.float32)
|
|
|
|
def melspectrogram(self, y: np.ndarray) -> np.ndarray:
|
|
"""Compute a melspectrogram from a waveform."""
|
|
if self.preemphasis != 0:
|
|
D = self._stft(self.apply_preemphasis(y))
|
|
else:
|
|
D = self._stft(y)
|
|
if self.do_amp_to_db_mel:
|
|
S = self._amp_to_db(self._linear_to_mel(np.abs(D)))
|
|
else:
|
|
S = self._linear_to_mel(np.abs(D))
|
|
return self.normalize(S).astype(np.float32)
|
|
|
|
def inv_spectrogram(self, spectrogram: np.ndarray) -> np.ndarray:
|
|
"""Convert a spectrogram to a waveform using Griffi-Lim vocoder."""
|
|
S = self.denormalize(spectrogram)
|
|
S = self._db_to_amp(S)
|
|
# Reconstruct phase
|
|
if self.preemphasis != 0:
|
|
return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power))
|
|
return self._griffin_lim(S ** self.power)
|
|
|
|
def inv_melspectrogram(self, mel_spectrogram: np.ndarray) -> np.ndarray:
|
|
"""Convert a melspectrogram to a waveform using Griffi-Lim vocoder."""
|
|
D = self.denormalize(mel_spectrogram)
|
|
S = self._db_to_amp(D)
|
|
S = self._mel_to_linear(S) # Convert back to linear
|
|
if self.preemphasis != 0:
|
|
return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power))
|
|
return self._griffin_lim(S ** self.power)
|
|
|
|
def out_linear_to_mel(self, linear_spec: np.ndarray) -> np.ndarray:
|
|
"""Convert a full scale linear spectrogram output of a network to a melspectrogram.
|
|
|
|
Args:
|
|
linear_spec (np.ndarray): Normalized full scale linear spectrogram.
|
|
|
|
Returns:
|
|
np.ndarray: Normalized melspectrogram.
|
|
"""
|
|
S = self.denormalize(linear_spec)
|
|
S = self._db_to_amp(S)
|
|
S = self._linear_to_mel(np.abs(S))
|
|
S = self._amp_to_db(S)
|
|
mel = self.normalize(S)
|
|
return mel
|
|
|
|
### STFT and ISTFT ###
|
|
def _stft(self, y: np.ndarray) -> np.ndarray:
|
|
"""Librosa STFT wrapper.
|
|
|
|
Args:
|
|
y (np.ndarray): Audio signal.
|
|
|
|
Returns:
|
|
np.ndarray: Complex number array.
|
|
"""
|
|
return librosa.stft(
|
|
y=y,
|
|
n_fft=self.fft_size,
|
|
hop_length=self.hop_length,
|
|
win_length=self.win_length,
|
|
pad_mode=self.stft_pad_mode,
|
|
window="hann",
|
|
center=True,
|
|
)
|
|
|
|
def _istft(self, y: np.ndarray) -> np.ndarray:
|
|
"""Librosa iSTFT wrapper."""
|
|
return librosa.istft(y, hop_length=self.hop_length, win_length=self.win_length)
|
|
|
|
def _griffin_lim(self, S):
|
|
angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
|
|
S_complex = np.abs(S).astype(np.complex)
|
|
y = self._istft(S_complex * angles)
|
|
for _ in range(self.griffin_lim_iters):
|
|
angles = np.exp(1j * np.angle(self._stft(y)))
|
|
y = self._istft(S_complex * angles)
|
|
return y
|
|
|
|
def compute_stft_paddings(self, x, pad_sides=1):
|
|
"""Compute paddings used by Librosa's STFT. Compute right padding (final frame) or both sides padding
|
|
(first and final frames)"""
|
|
assert pad_sides in (1, 2)
|
|
pad = (x.shape[0] // self.hop_length + 1) * self.hop_length - x.shape[0]
|
|
if pad_sides == 1:
|
|
return 0, pad
|
|
return pad // 2, pad // 2 + pad % 2
|
|
|
|
### Compute F0 ###
|
|
# TODO: pw causes some dep issues
|
|
# def compute_f0(self, x):
|
|
# f0, t = pw.dio(
|
|
# x.astype(np.double),
|
|
# fs=self.sample_rate,
|
|
# f0_ceil=self.mel_fmax,
|
|
# frame_period=1000 * self.hop_length / self.sample_rate,
|
|
# )
|
|
# f0 = pw.stonemask(x.astype(np.double), f0, t, self.sample_rate)
|
|
# return f0
|
|
|
|
### Audio Processing ###
|
|
def find_endpoint(self, wav: np.ndarray, threshold_db=-40, min_silence_sec=0.8) -> int:
|
|
"""Find the last point without silence at the end of a audio signal.
|
|
|
|
Args:
|
|
wav (np.ndarray): Audio signal.
|
|
threshold_db (int, optional): Silence threshold in decibels. Defaults to -40.
|
|
min_silence_sec (float, optional): Ignore silences that are shorter then this in secs. Defaults to 0.8.
|
|
|
|
Returns:
|
|
int: Last point without silence.
|
|
"""
|
|
window_length = int(self.sample_rate * min_silence_sec)
|
|
hop_length = int(window_length / 4)
|
|
threshold = self._db_to_amp(threshold_db)
|
|
for x in range(hop_length, len(wav) - window_length, hop_length):
|
|
if np.max(wav[x : x + window_length]) < threshold:
|
|
return x + hop_length
|
|
return len(wav)
|
|
|
|
def trim_silence(self, wav):
|
|
"""Trim silent parts with a threshold and 0.01 sec margin"""
|
|
margin = int(self.sample_rate * 0.01)
|
|
wav = wav[margin:-margin]
|
|
return librosa.effects.trim(wav, top_db=self.trim_db, frame_length=self.win_length, hop_length=self.hop_length)[
|
|
0
|
|
]
|
|
|
|
@staticmethod
|
|
def sound_norm(x: np.ndarray) -> np.ndarray:
|
|
"""Normalize the volume of an audio signal.
|
|
|
|
Args:
|
|
x (np.ndarray): Raw waveform.
|
|
|
|
Returns:
|
|
np.ndarray: Volume normalized waveform.
|
|
"""
|
|
return x / abs(x).max() * 0.95
|
|
|
|
### save and load ###
|
|
def load_wav(self, filename: str, sr: int = None) -> np.ndarray:
|
|
"""Read a wav file using Librosa and optionally resample, silence trim, volume normalize.
|
|
|
|
Args:
|
|
filename (str): Path to the wav file.
|
|
sr (int, optional): Sampling rate for resampling. Defaults to None.
|
|
|
|
Returns:
|
|
np.ndarray: Loaded waveform.
|
|
"""
|
|
if self.resample:
|
|
x, sr = librosa.load(filename, sr=self.sample_rate)
|
|
elif sr is None:
|
|
x, sr = sf.read(filename)
|
|
assert self.sample_rate == sr, "%s vs %s" % (self.sample_rate, sr)
|
|
else:
|
|
x, sr = librosa.load(filename, sr=sr)
|
|
if self.do_trim_silence:
|
|
try:
|
|
x = self.trim_silence(x)
|
|
except ValueError:
|
|
print(f" [!] File cannot be trimmed for silence - {filename}")
|
|
if self.do_sound_norm:
|
|
x = self.sound_norm(x)
|
|
return x
|
|
|
|
def save_wav(self, wav: np.ndarray, path: str, sr: int = None) -> None:
|
|
"""Save a waveform to a file using Scipy.
|
|
|
|
Args:
|
|
wav (np.ndarray): Waveform to save.
|
|
path (str): Path to a output file.
|
|
sr (int, optional): Sampling rate used for saving to the file. Defaults to None.
|
|
"""
|
|
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
|
|
scipy.io.wavfile.write(path, sr if sr else self.sample_rate, wav_norm.astype(np.int16))
|
|
|
|
@staticmethod
|
|
def mulaw_encode(wav: np.ndarray, qc: int) -> np.ndarray:
|
|
mu = 2 ** qc - 1
|
|
# wav_abs = np.minimum(np.abs(wav), 1.0)
|
|
signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1.0 + mu)
|
|
# Quantize signal to the specified number of levels.
|
|
signal = (signal + 1) / 2 * mu + 0.5
|
|
return np.floor(
|
|
signal,
|
|
)
|
|
|
|
@staticmethod
|
|
def mulaw_decode(wav, qc):
|
|
"""Recovers waveform from quantized values."""
|
|
mu = 2 ** qc - 1
|
|
x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1)
|
|
return x
|
|
|
|
@staticmethod
|
|
def encode_16bits(x):
|
|
return np.clip(x * 2 ** 15, -(2 ** 15), 2 ** 15 - 1).astype(np.int16)
|
|
|
|
@staticmethod
|
|
def quantize(x: np.ndarray, bits: int) -> np.ndarray:
|
|
"""Quantize a waveform to a given number of bits.
|
|
|
|
Args:
|
|
x (np.ndarray): Waveform to quantize. Must be normalized into the range `[-1, 1]`.
|
|
bits (int): Number of quantization bits.
|
|
|
|
Returns:
|
|
np.ndarray: Quantized waveform.
|
|
"""
|
|
return (x + 1.0) * (2 ** bits - 1) / 2
|
|
|
|
@staticmethod
|
|
def dequantize(x, bits):
|
|
"""Dequantize a waveform from the given number of bits."""
|
|
return 2 * x / (2 ** bits - 1) - 1
|
|
|
|
|
|
def _log(x, base):
|
|
if base == 10:
|
|
return np.log10(x)
|
|
return np.log(x)
|
|
|
|
|
|
def _exp(x, base):
|
|
if base == 10:
|
|
return np.power(10, x)
|
|
return np.exp(x)
|