coqui-tts/notebooks/dataset_analysis
prakharpbuf c1875f68df
typos and minor fixes (#2508)
* Update tacotron1-2.md

* Update README.md

* Update Tutorial_2_train_your_first_TTS_model.ipynb

* Update synthesizer.py

There is no arg called --speaker_name

* Update formatting_your_dataset.md

* Update AnalyzeDataset.ipynb

* Update AnalyzeDataset.ipynb

* Update AnalyzeDataset.ipynb

* Update finetuning.md

* Update train_yourtts.py

* Update train_yourtts.py

* Update train_yourtts.py

* Update finetuning.md
2023-04-26 15:22:57 +02:00
..
AnalyzeDataset.ipynb typos and minor fixes (#2508) 2023-04-26 15:22:57 +02:00
CheckDatasetSNR.ipynb Update notebooks 2021-10-21 16:29:06 +00:00
CheckPitch.ipynb Update notebooks 2021-10-21 16:29:06 +00:00
CheckSpectrograms.ipynb Update CheckSpectrograms notebook (#1418) 2022-03-18 16:48:24 +01:00
PhonemeCoverage.ipynb updates to dataset analysis notebooks for compatibility with latest version of TTS (#1853) 2022-08-15 11:11:07 +02:00
README.md Mass refactoring 2020-07-17 11:16:05 +02:00
analyze.py fix linter 2021-12-20 11:54:10 +00:00

README.md

Simple Notebook to Analyze a Dataset

By the use of this notebook, you can easily analyze a brand new dataset, find exceptional cases and define your training set.

What we are looking in here is reasonable distribution of instances in terms of sequence-length, audio-length and word-coverage.

This notebook is inspired from https://github.com/MycroftAI/mimic2