mirror of https://github.com/coqui-ai/TTS.git
1. Use a single Gradscaler for all the optimizers 2. Save terminal logs to a file. In DDP mode, each worker creates `trainer_N_log.txt`. 3. Fixes to allow only the main worker (rank==0) writing to Tensorboard 4. Pass parameters owned by the target optimizer to the grad_clip_norm |
||
---|---|---|
.. | ||
bin | ||
config | ||
server | ||
speaker_encoder | ||
tts | ||
utils | ||
vocoder | ||
.models.json | ||
VERSION | ||
__init__.py | ||
model.py | ||
trainer.py |