mirror of https://github.com/coqui-ai/TTS.git
111 lines
3.7 KiB
Python
111 lines
3.7 KiB
Python
# edited from https://github.com/fastai/imagenet-fast/blob/master/imagenet_nv/distributed.py
|
|
import math
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
|
|
from torch.autograd import Variable
|
|
from torch.utils.data.sampler import Sampler
|
|
|
|
|
|
class DistributedSampler(Sampler):
|
|
"""
|
|
Non shuffling Distributed Sampler
|
|
"""
|
|
|
|
def __init__(self, dataset, num_replicas=None, rank=None):
|
|
super().__init__(dataset)
|
|
if num_replicas is None:
|
|
if not dist.is_available():
|
|
raise RuntimeError("Requires distributed package to be available")
|
|
num_replicas = dist.get_world_size()
|
|
if rank is None:
|
|
if not dist.is_available():
|
|
raise RuntimeError("Requires distributed package to be available")
|
|
rank = dist.get_rank()
|
|
self.dataset = dataset
|
|
self.num_replicas = num_replicas
|
|
self.rank = rank
|
|
self.epoch = 0
|
|
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
|
|
self.total_size = self.num_samples * self.num_replicas
|
|
|
|
def __iter__(self):
|
|
indices = torch.arange(len(self.dataset)).tolist()
|
|
|
|
# add extra samples to make it evenly divisible
|
|
indices += indices[: (self.total_size - len(indices))]
|
|
assert len(indices) == self.total_size
|
|
|
|
# subsample
|
|
indices = indices[self.rank : self.total_size : self.num_replicas]
|
|
assert len(indices) == self.num_samples
|
|
|
|
return iter(indices)
|
|
|
|
def __len__(self):
|
|
return self.num_samples
|
|
|
|
def set_epoch(self, epoch):
|
|
self.epoch = epoch
|
|
|
|
|
|
def reduce_tensor(tensor, num_gpus):
|
|
rt = tensor.clone()
|
|
dist.all_reduce(rt, op=dist.reduce_op.SUM)
|
|
rt /= num_gpus
|
|
return rt
|
|
|
|
|
|
def init_distributed(rank, num_gpus, group_name, dist_backend, dist_url):
|
|
assert torch.cuda.is_available(), "Distributed mode requires CUDA."
|
|
|
|
# Set cuda device so everything is done on the right GPU.
|
|
torch.cuda.set_device(rank % torch.cuda.device_count())
|
|
|
|
# Initialize distributed communication
|
|
dist.init_process_group(dist_backend, init_method=dist_url, world_size=num_gpus, rank=rank, group_name=group_name)
|
|
|
|
|
|
def apply_gradient_allreduce(module):
|
|
|
|
# sync model parameters
|
|
for p in module.state_dict().values():
|
|
if not torch.is_tensor(p):
|
|
continue
|
|
dist.broadcast(p, 0)
|
|
|
|
def allreduce_params():
|
|
if module.needs_reduction:
|
|
module.needs_reduction = False
|
|
# bucketing params based on value types
|
|
buckets = {}
|
|
for param in module.parameters():
|
|
if param.requires_grad and param.grad is not None:
|
|
tp = type(param.data)
|
|
if tp not in buckets:
|
|
buckets[tp] = []
|
|
buckets[tp].append(param)
|
|
for tp in buckets:
|
|
bucket = buckets[tp]
|
|
grads = [param.grad.data for param in bucket]
|
|
coalesced = _flatten_dense_tensors(grads)
|
|
dist.all_reduce(coalesced, op=dist.reduce_op.SUM)
|
|
coalesced /= dist.get_world_size()
|
|
for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
|
|
buf.copy_(synced)
|
|
|
|
for param in list(module.parameters()):
|
|
|
|
def allreduce_hook(*_):
|
|
Variable._execution_engine.queue_callback(allreduce_params) # pylint: disable=protected-access
|
|
|
|
if param.requires_grad:
|
|
param.register_hook(allreduce_hook)
|
|
|
|
def set_needs_reduction(self, *_):
|
|
self.needs_reduction = True
|
|
|
|
module.register_forward_hook(set_needs_reduction)
|
|
return module
|