coqui-tts/utils/synthesis.py

32 lines
1.1 KiB
Python

import io
import time
import librosa
import torch
import numpy as np
from .text import text_to_sequence, phoneme_to_sequence, sequence_to_phoneme
from .visual import visualize
from matplotlib import pylab as plt
def synthesis(m, s, CONFIG, use_cuda, ap):
text_cleaner = [CONFIG.text_cleaner]
if CONFIG.use_phonemes:
seq = np.asarray(
phoneme_to_sequence(s, text_cleaner, CONFIG.phoneme_language),
dtype=np.int32)
else:
seq = np.asarray(text_to_sequence(s, text_cleaner), dtype=np.int32)
chars_var = torch.from_numpy(seq).unsqueeze(0)
if use_cuda:
chars_var = chars_var.cuda()
decoder_output, postnet_output, alignments, stop_tokens = m.inference(
chars_var.long())
postnet_output = postnet_output[0].data.cpu().numpy()
decoder_output = decoder_output[0].data.cpu().numpy()
alignment = alignments[0].cpu().data.numpy()
if CONFIG.model == "Tacotron":
wav = ap.inv_spectrogram(postnet_output.T)
else:
wav = ap.inv_mel_spectrogram(postnet_output.T)
wav = wav[:ap.find_endpoint(wav)]
return wav, alignment, decoder_output, postnet_output, stop_tokens