coqui-tts/TTS/bin/train_encoder.py

264 lines
8.9 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import argparse
import os
import sys
import time
import traceback
import torch
from torch.utils.data import DataLoader
from TTS.speaker_encoder.dataset import MyDataset
from TTS.speaker_encoder.losses import AngleProtoLoss, GE2ELoss
from TTS.speaker_encoder.model import SpeakerEncoder
from TTS.speaker_encoder.utils.generic_utils import check_config_speaker_encoder, save_best_model
from TTS.speaker_encoder.utils.visual import plot_embeddings
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import (
count_parameters,
create_experiment_folder,
get_git_branch,
remove_experiment_folder,
set_init_dict,
)
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import NoamLR, check_update
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.manual_seed(54321)
use_cuda = torch.cuda.is_available()
num_gpus = torch.cuda.device_count()
print(" > Using CUDA: ", use_cuda)
print(" > Number of GPUs: ", num_gpus)
def setup_loader(ap: AudioProcessor, is_val: bool = False, verbose: bool = False):
if is_val:
loader = None
else:
dataset = MyDataset(
ap,
meta_data_eval if is_val else meta_data_train,
voice_len=1.6,
num_utter_per_speaker=c.num_utters_per_speaker,
num_speakers_in_batch=c.num_speakers_in_batch,
skip_speakers=False,
storage_size=c.storage["storage_size"],
sample_from_storage_p=c.storage["sample_from_storage_p"],
additive_noise=c.storage["additive_noise"],
verbose=verbose,
)
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(
dataset,
batch_size=c.num_speakers_in_batch,
shuffle=False,
num_workers=c.num_loader_workers,
collate_fn=dataset.collate_fn,
)
return loader
def train(model, criterion, optimizer, scheduler, ap, global_step):
data_loader = setup_loader(ap, is_val=False, verbose=True)
model.train()
epoch_time = 0
best_loss = float("inf")
avg_loss = 0
avg_loader_time = 0
end_time = time.time()
for _, data in enumerate(data_loader):
start_time = time.time()
# setup input data
inputs = data[0]
loader_time = time.time() - end_time
global_step += 1
# setup lr
if c.lr_decay:
scheduler.step()
optimizer.zero_grad()
# dispatch data to GPU
if use_cuda:
inputs = inputs.cuda(non_blocking=True)
# labels = labels.cuda(non_blocking=True)
# forward pass model
outputs = model(inputs)
# loss computation
loss = criterion(outputs.view(c.num_speakers_in_batch, outputs.shape[0] // c.num_speakers_in_batch, -1))
loss.backward()
grad_norm, _ = check_update(model, c.grad_clip)
optimizer.step()
step_time = time.time() - start_time
epoch_time += step_time
# Averaged Loss and Averaged Loader Time
avg_loss = 0.01 * loss.item() + 0.99 * avg_loss if avg_loss != 0 else loss.item()
avg_loader_time = (
1 / c.num_loader_workers * loader_time + (c.num_loader_workers - 1) / c.num_loader_workers * avg_loader_time
if avg_loader_time != 0
else loader_time
)
current_lr = optimizer.param_groups[0]["lr"]
if global_step % c.steps_plot_stats == 0:
# Plot Training Epoch Stats
train_stats = {
"loss": avg_loss,
"lr": current_lr,
"grad_norm": grad_norm,
"step_time": step_time,
"avg_loader_time": avg_loader_time,
}
tb_logger.tb_train_epoch_stats(global_step, train_stats)
figures = {
# FIXME: not constant
"UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), 10),
}
tb_logger.tb_train_figures(global_step, figures)
if global_step % c.print_step == 0:
print(
" | > Step:{} Loss:{:.5f} AvgLoss:{:.5f} GradNorm:{:.5f} "
"StepTime:{:.2f} LoaderTime:{:.2f} AvGLoaderTime:{:.2f} LR:{:.6f}".format(
global_step, loss.item(), avg_loss, grad_norm, step_time, loader_time, avg_loader_time, current_lr
),
flush=True,
)
# save best model
best_loss = save_best_model(model, optimizer, avg_loss, best_loss, OUT_PATH, global_step)
end_time = time.time()
return avg_loss, global_step
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data_train
global meta_data_eval
ap = AudioProcessor(**c.audio)
model = SpeakerEncoder(
input_dim=c.model["input_dim"],
proj_dim=c.model["proj_dim"],
lstm_dim=c.model["lstm_dim"],
num_lstm_layers=c.model["num_lstm_layers"],
)
optimizer = RAdam(model.parameters(), lr=c.lr)
if c.loss == "ge2e":
criterion = GE2ELoss(loss_method="softmax")
elif c.loss == "angleproto":
criterion = AngleProtoLoss()
else:
raise Exception("The %s not is a loss supported" % c.loss)
if args.restore_path:
checkpoint = torch.load(args.restore_path)
try:
# TODO: fix optimizer init, model.cuda() needs to be called before
# optimizer restore
# optimizer.load_state_dict(checkpoint['optimizer'])
if c.reinit_layers:
raise RuntimeError
model.load_state_dict(checkpoint["model"])
except KeyError:
print(" > Partial model initialization.")
model_dict = model.state_dict()
model_dict = set_init_dict(model_dict, checkpoint, c)
model.load_state_dict(model_dict)
del model_dict
for group in optimizer.param_groups:
group["lr"] = c.lr
print(" > Model restored from step %d" % checkpoint["step"], flush=True)
args.restore_step = checkpoint["step"]
else:
args.restore_step = 0
if use_cuda:
model = model.cuda()
criterion.cuda()
if c.lr_decay:
scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1)
else:
scheduler = None
num_params = count_parameters(model)
print("\n > Model has {} parameters".format(num_params), flush=True)
# pylint: disable=redefined-outer-name
meta_data_train, meta_data_eval = load_meta_data(c.datasets)
global_step = args.restore_step
_, global_step = train(model, criterion, optimizer, scheduler, ap, global_step)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--restore_path", type=str, help="Path to model outputs (checkpoint, tensorboard etc.).", default=0
)
parser.add_argument(
"--config_path",
type=str,
required=True,
help="Path to config file for training.",
)
parser.add_argument("--debug", type=bool, default=True, help="Do not verify commit integrity to run training.")
parser.add_argument("--data_path", type=str, default="", help="Defines the data path. It overwrites config.json.")
parser.add_argument("--output_path", type=str, help="path for training outputs.", default="")
parser.add_argument("--output_folder", type=str, default="", help="folder name for training outputs.")
args = parser.parse_args()
# setup output paths and read configs
c = load_config(args.config_path)
check_config_speaker_encoder(c)
_ = os.path.dirname(os.path.realpath(__file__))
if args.data_path != "":
c.data_path = args.data_path
if args.output_path == "":
OUT_PATH = os.path.join(_, c.output_path)
else:
OUT_PATH = args.output_path
if args.output_folder == "":
OUT_PATH = create_experiment_folder(OUT_PATH, c.run_name, args.debug)
else:
OUT_PATH = os.path.join(OUT_PATH, args.output_folder)
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
copy_model_files(c, args.config_path, OUT_PATH, new_fields)
LOG_DIR = OUT_PATH
tb_logger = TensorboardLogger(LOG_DIR, model_name="Speaker_Encoder")
try:
main(args)
except KeyboardInterrupt:
remove_experiment_folder(OUT_PATH)
try:
sys.exit(0)
except SystemExit:
os._exit(0) # pylint: disable=protected-access
except Exception: # pylint: disable=broad-except
remove_experiment_folder(OUT_PATH)
traceback.print_exc()
sys.exit(1)