mirror of https://github.com/coqui-ai/TTS.git
834 lines
31 KiB
Python
834 lines
31 KiB
Python
from dataclasses import dataclass, field
|
|
from typing import Dict, List, Optional, Tuple, Union
|
|
|
|
import librosa
|
|
import numpy as np
|
|
import torch
|
|
from coqpit import Coqpit
|
|
from torch import nn
|
|
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
|
from torch.nn import functional as F
|
|
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
|
|
|
import TTS.vc.modules.freevc.commons as commons
|
|
import TTS.vc.modules.freevc.modules as modules
|
|
from TTS.tts.utils.speakers import SpeakerManager
|
|
from TTS.utils.io import load_fsspec, save_checkpoint
|
|
from TTS.vc.configs.shared_configs import BaseVCConfig
|
|
from TTS.vc.models.base_vc import BaseVC
|
|
from TTS.vc.modules.freevc.commons import get_padding, init_weights
|
|
from TTS.vc.modules.freevc.mel_processing import mel_spectrogram_torch
|
|
from TTS.vc.modules.freevc.speaker_encoder.speaker_encoder import SpeakerEncoder as SpeakerEncoderEx
|
|
from TTS.vc.modules.freevc.wavlm import get_wavlm
|
|
|
|
|
|
class ResidualCouplingBlock(nn.Module):
|
|
def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.n_flows = n_flows
|
|
self.gin_channels = gin_channels
|
|
|
|
self.flows = nn.ModuleList()
|
|
for i in range(n_flows):
|
|
self.flows.append(
|
|
modules.ResidualCouplingLayer(
|
|
channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
gin_channels=gin_channels,
|
|
mean_only=True,
|
|
)
|
|
)
|
|
self.flows.append(modules.Flip())
|
|
|
|
def forward(self, x, x_mask, g=None, reverse=False):
|
|
if not reverse:
|
|
for flow in self.flows:
|
|
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
|
else:
|
|
for flow in reversed(self.flows):
|
|
x = flow(x, x_mask, g=g, reverse=reverse)
|
|
return x
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
def __init__(
|
|
self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0
|
|
):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.gin_channels = gin_channels
|
|
|
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
|
self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
|
|
|
def forward(self, x, x_lengths, g=None):
|
|
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
|
x = self.pre(x) * x_mask
|
|
x = self.enc(x, x_mask, g=g)
|
|
stats = self.proj(x) * x_mask
|
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
|
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
|
return z, m, logs, x_mask
|
|
|
|
|
|
class Generator(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
initial_channel,
|
|
resblock,
|
|
resblock_kernel_sizes,
|
|
resblock_dilation_sizes,
|
|
upsample_rates,
|
|
upsample_initial_channel,
|
|
upsample_kernel_sizes,
|
|
gin_channels=0,
|
|
):
|
|
super(Generator, self).__init__()
|
|
self.num_kernels = len(resblock_kernel_sizes)
|
|
self.num_upsamples = len(upsample_rates)
|
|
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
|
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
|
|
|
self.ups = nn.ModuleList()
|
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
|
self.ups.append(
|
|
weight_norm(
|
|
ConvTranspose1d(
|
|
upsample_initial_channel // (2**i),
|
|
upsample_initial_channel // (2 ** (i + 1)),
|
|
k,
|
|
u,
|
|
padding=(k - u) // 2,
|
|
)
|
|
)
|
|
)
|
|
|
|
self.resblocks = nn.ModuleList()
|
|
for i in range(len(self.ups)):
|
|
ch = upsample_initial_channel // (2 ** (i + 1))
|
|
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
|
self.resblocks.append(resblock(ch, k, d))
|
|
|
|
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
|
self.ups.apply(init_weights)
|
|
|
|
if gin_channels != 0:
|
|
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
|
|
|
def forward(self, x, g=None):
|
|
x = self.conv_pre(x)
|
|
if g is not None:
|
|
x = x + self.cond(g)
|
|
|
|
for i in range(self.num_upsamples):
|
|
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
|
x = self.ups[i](x)
|
|
xs = None
|
|
for j in range(self.num_kernels):
|
|
if xs is None:
|
|
xs = self.resblocks[i * self.num_kernels + j](x)
|
|
else:
|
|
xs += self.resblocks[i * self.num_kernels + j](x)
|
|
x = xs / self.num_kernels
|
|
x = F.leaky_relu(x)
|
|
x = self.conv_post(x)
|
|
x = torch.tanh(x)
|
|
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
print("Removing weight norm...")
|
|
for l in self.ups:
|
|
remove_weight_norm(l)
|
|
for l in self.resblocks:
|
|
l.remove_weight_norm()
|
|
|
|
|
|
class DiscriminatorP(torch.nn.Module):
|
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
|
super(DiscriminatorP, self).__init__()
|
|
self.period = period
|
|
self.use_spectral_norm = use_spectral_norm
|
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
|
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
|
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
|
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
|
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
|
]
|
|
)
|
|
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
|
|
|
def forward(self, x):
|
|
fmap = []
|
|
|
|
# 1d to 2d
|
|
b, c, t = x.shape
|
|
if t % self.period != 0: # pad first
|
|
n_pad = self.period - (t % self.period)
|
|
x = F.pad(x, (0, n_pad), "reflect")
|
|
t = t + n_pad
|
|
x = x.view(b, c, t // self.period, self.period)
|
|
|
|
for l in self.convs:
|
|
x = l(x)
|
|
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
|
fmap.append(x)
|
|
x = self.conv_post(x)
|
|
fmap.append(x)
|
|
x = torch.flatten(x, 1, -1)
|
|
|
|
return x, fmap
|
|
|
|
|
|
class DiscriminatorS(torch.nn.Module):
|
|
def __init__(self, use_spectral_norm=False):
|
|
super(DiscriminatorS, self).__init__()
|
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
|
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
|
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
|
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
|
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
|
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
|
]
|
|
)
|
|
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
|
|
|
def forward(self, x):
|
|
fmap = []
|
|
|
|
for l in self.convs:
|
|
x = l(x)
|
|
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
|
fmap.append(x)
|
|
x = self.conv_post(x)
|
|
fmap.append(x)
|
|
x = torch.flatten(x, 1, -1)
|
|
|
|
return x, fmap
|
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module):
|
|
def __init__(self, use_spectral_norm=False):
|
|
super(MultiPeriodDiscriminator, self).__init__()
|
|
periods = [2, 3, 5, 7, 11]
|
|
|
|
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
|
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
|
self.discriminators = nn.ModuleList(discs)
|
|
|
|
def forward(self, y, y_hat):
|
|
y_d_rs = []
|
|
y_d_gs = []
|
|
fmap_rs = []
|
|
fmap_gs = []
|
|
for i, d in enumerate(self.discriminators):
|
|
y_d_r, fmap_r = d(y)
|
|
y_d_g, fmap_g = d(y_hat)
|
|
y_d_rs.append(y_d_r)
|
|
y_d_gs.append(y_d_g)
|
|
fmap_rs.append(fmap_r)
|
|
fmap_gs.append(fmap_g)
|
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
|
|
|
|
|
class SpeakerEncoder(torch.nn.Module):
|
|
def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
|
|
super(SpeakerEncoder, self).__init__()
|
|
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
|
|
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
|
self.relu = nn.ReLU()
|
|
|
|
def forward(self, mels):
|
|
self.lstm.flatten_parameters()
|
|
_, (hidden, _) = self.lstm(mels)
|
|
embeds_raw = self.relu(self.linear(hidden[-1]))
|
|
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
|
|
|
def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
|
|
mel_slices = []
|
|
for i in range(0, total_frames - partial_frames, partial_hop):
|
|
mel_range = torch.arange(i, i + partial_frames)
|
|
mel_slices.append(mel_range)
|
|
|
|
return mel_slices
|
|
|
|
def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
|
|
mel_len = mel.size(1)
|
|
last_mel = mel[:, -partial_frames:]
|
|
|
|
if mel_len > partial_frames:
|
|
mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
|
|
mels = list(mel[:, s] for s in mel_slices)
|
|
mels.append(last_mel)
|
|
mels = torch.stack(tuple(mels), 0).squeeze(1)
|
|
|
|
with torch.no_grad():
|
|
partial_embeds = self(mels)
|
|
embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
|
|
# embed = embed / torch.linalg.norm(embed, 2)
|
|
else:
|
|
with torch.no_grad():
|
|
embed = self(last_mel)
|
|
|
|
return embed
|
|
|
|
|
|
@dataclass
|
|
class FreeVCAudioConfig(Coqpit):
|
|
"""Audio configuration
|
|
|
|
Args:
|
|
max_wav_value (float):
|
|
The maximum value of the waveform.
|
|
|
|
input_sample_rate (int):
|
|
The sampling rate of the input waveform.
|
|
|
|
output_sample_rate (int):
|
|
The sampling rate of the output waveform.
|
|
|
|
filter_length (int):
|
|
The length of the filter.
|
|
|
|
hop_length (int):
|
|
The hop length.
|
|
|
|
win_length (int):
|
|
The window length.
|
|
|
|
n_mel_channels (int):
|
|
The number of mel channels.
|
|
|
|
mel_fmin (float):
|
|
The minimum frequency of the mel filterbank.
|
|
|
|
mel_fmax (Optional[float]):
|
|
The maximum frequency of the mel filterbank.
|
|
"""
|
|
|
|
max_wav_value: float = field(default=32768.0)
|
|
input_sample_rate: int = field(default=16000)
|
|
output_sample_rate: int = field(default=24000)
|
|
filter_length: int = field(default=1280)
|
|
hop_length: int = field(default=320)
|
|
win_length: int = field(default=1280)
|
|
n_mel_channels: int = field(default=80)
|
|
mel_fmin: float = field(default=0.0)
|
|
mel_fmax: Optional[float] = field(default=None)
|
|
|
|
|
|
@dataclass
|
|
class FreeVCArgs(Coqpit):
|
|
"""FreeVC model arguments
|
|
|
|
Args:
|
|
spec_channels (int):
|
|
The number of channels in the spectrogram.
|
|
|
|
inter_channels (int):
|
|
The number of channels in the intermediate layers.
|
|
|
|
hidden_channels (int):
|
|
The number of channels in the hidden layers.
|
|
|
|
filter_channels (int):
|
|
The number of channels in the filter layers.
|
|
|
|
n_heads (int):
|
|
The number of attention heads.
|
|
|
|
n_layers (int):
|
|
The number of layers.
|
|
|
|
kernel_size (int):
|
|
The size of the kernel.
|
|
|
|
p_dropout (float):
|
|
The dropout probability.
|
|
|
|
resblock (str):
|
|
The type of residual block.
|
|
|
|
resblock_kernel_sizes (List[int]):
|
|
The kernel sizes for the residual blocks.
|
|
|
|
resblock_dilation_sizes (List[List[int]]):
|
|
The dilation sizes for the residual blocks.
|
|
|
|
upsample_rates (List[int]):
|
|
The upsample rates.
|
|
|
|
upsample_initial_channel (int):
|
|
The number of channels in the initial upsample layer.
|
|
|
|
upsample_kernel_sizes (List[int]):
|
|
The kernel sizes for the upsample layers.
|
|
|
|
n_layers_q (int):
|
|
The number of layers in the quantization network.
|
|
|
|
use_spectral_norm (bool):
|
|
Whether to use spectral normalization.
|
|
|
|
gin_channels (int):
|
|
The number of channels in the global conditioning vector.
|
|
|
|
ssl_dim (int):
|
|
The dimension of the self-supervised learning embedding.
|
|
|
|
use_spk (bool):
|
|
Whether to use external speaker encoder.
|
|
"""
|
|
|
|
spec_channels: int = field(default=641)
|
|
inter_channels: int = field(default=192)
|
|
hidden_channels: int = field(default=192)
|
|
filter_channels: int = field(default=768)
|
|
n_heads: int = field(default=2)
|
|
n_layers: int = field(default=6)
|
|
kernel_size: int = field(default=3)
|
|
p_dropout: float = field(default=0.1)
|
|
resblock: str = field(default="1")
|
|
resblock_kernel_sizes: List[int] = field(default_factory=lambda: [3, 7, 11])
|
|
resblock_dilation_sizes: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
|
|
upsample_rates: List[int] = field(default_factory=lambda: [10, 8, 2, 2])
|
|
upsample_initial_channel: int = field(default=512)
|
|
upsample_kernel_sizes: List[int] = field(default_factory=lambda: [16, 16, 4, 4])
|
|
n_layers_q: int = field(default=3)
|
|
use_spectral_norm: bool = field(default=False)
|
|
gin_channels: int = field(default=256)
|
|
ssl_dim: int = field(default=1024)
|
|
use_spk: bool = field(default=False)
|
|
num_spks: int = field(default=0)
|
|
segment_size: int = field(default=8960)
|
|
|
|
|
|
class FreeVC(BaseVC):
|
|
"""
|
|
|
|
Papaer::
|
|
https://arxiv.org/abs/2210.15418#
|
|
|
|
Paper Abstract::
|
|
Voice conversion (VC) can be achieved by first extracting source content information and target speaker
|
|
information, and then reconstructing waveform with these information. However, current approaches normally
|
|
either extract dirty content information with speaker information leaked in, or demand a large amount of
|
|
annotated data for training. Besides, the quality of reconstructed waveform can be degraded by the
|
|
mismatch between conversion model and vocoder. In this paper, we adopt the end-to-end framework of VITS for
|
|
high-quality waveform reconstruction, and propose strategies for clean content information extraction without
|
|
text annotation. We disentangle content information by imposing an information bottleneck to WavLM features,
|
|
and propose the spectrogram-resize based data augmentation to improve the purity of extracted content
|
|
information. Experimental results show that the proposed method outperforms the latest VC models trained with
|
|
annotated data and has greater robustness.
|
|
|
|
Original Code::
|
|
https://github.com/OlaWod/FreeVC
|
|
|
|
Examples:
|
|
>>> from TTS.vc.configs.freevc_config import FreeVCConfig
|
|
>>> from TTS.vc.models.freevc import FreeVC
|
|
>>> config = FreeVCConfig()
|
|
>>> model = FreeVC(config)
|
|
"""
|
|
|
|
def __init__(self, config: Coqpit, speaker_manager: SpeakerManager = None):
|
|
super().__init__(config, None, speaker_manager, None)
|
|
|
|
self.init_multispeaker(config)
|
|
|
|
self.spec_channels = self.args.spec_channels
|
|
self.inter_channels = self.args.inter_channels
|
|
self.hidden_channels = self.args.hidden_channels
|
|
self.filter_channels = self.args.filter_channels
|
|
self.n_heads = self.args.n_heads
|
|
self.n_layers = self.args.n_layers
|
|
self.kernel_size = self.args.kernel_size
|
|
self.p_dropout = self.args.p_dropout
|
|
self.resblock = self.args.resblock
|
|
self.resblock_kernel_sizes = self.args.resblock_kernel_sizes
|
|
self.resblock_dilation_sizes = self.args.resblock_dilation_sizes
|
|
self.upsample_rates = self.args.upsample_rates
|
|
self.upsample_initial_channel = self.args.upsample_initial_channel
|
|
self.upsample_kernel_sizes = self.args.upsample_kernel_sizes
|
|
self.segment_size = self.args.segment_size
|
|
self.gin_channels = self.args.gin_channels
|
|
self.ssl_dim = self.args.ssl_dim
|
|
self.use_spk = self.args.use_spk
|
|
|
|
self.enc_p = Encoder(self.args.ssl_dim, self.inter_channels, self.hidden_channels, 5, 1, 16)
|
|
self.dec = Generator(
|
|
self.inter_channels,
|
|
self.resblock,
|
|
self.resblock_kernel_sizes,
|
|
self.resblock_dilation_sizes,
|
|
self.upsample_rates,
|
|
self.upsample_initial_channel,
|
|
self.upsample_kernel_sizes,
|
|
gin_channels=self.gin_channels,
|
|
)
|
|
self.enc_q = Encoder(
|
|
self.spec_channels, self.inter_channels, self.hidden_channels, 5, 1, 16, gin_channels=self.gin_channels
|
|
)
|
|
self.flow = ResidualCouplingBlock(
|
|
self.inter_channels, self.hidden_channels, 5, 1, 4, gin_channels=self.gin_channels
|
|
)
|
|
if not self.use_spk:
|
|
self.enc_spk = SpeakerEncoder(model_hidden_size=self.gin_channels, model_embedding_size=self.gin_channels)
|
|
else:
|
|
self.load_pretrained_speaker_encoder()
|
|
|
|
self.wavlm = get_wavlm()
|
|
|
|
@property
|
|
def device(self):
|
|
return next(self.parameters()).device
|
|
|
|
def load_pretrained_speaker_encoder(self):
|
|
"""Load pretrained speaker encoder model as mentioned in the paper."""
|
|
print(" > Loading pretrained speaker encoder model ...")
|
|
self.enc_spk_ex = SpeakerEncoderEx(
|
|
"https://github.com/coqui-ai/TTS/releases/download/v0.13.0_models/speaker_encoder.pt"
|
|
)
|
|
|
|
def init_multispeaker(self, config: Coqpit):
|
|
"""Initialize multi-speaker modules of a model. A model can be trained either with a speaker embedding layer
|
|
or with external `d_vectors` computed from a speaker encoder model.
|
|
|
|
You must provide a `speaker_manager` at initialization to set up the multi-speaker modules.
|
|
|
|
Args:
|
|
config (Coqpit): Model configuration.
|
|
data (List, optional): Dataset items to infer number of speakers. Defaults to None.
|
|
"""
|
|
self.num_spks = self.args.num_spks
|
|
if self.speaker_manager:
|
|
self.num_spks = self.speaker_manager.num_spks
|
|
|
|
def forward(
|
|
self,
|
|
c: torch.Tensor,
|
|
spec: torch.Tensor,
|
|
g: Optional[torch.Tensor] = None,
|
|
mel: Optional[torch.Tensor] = None,
|
|
c_lengths: Optional[torch.Tensor] = None,
|
|
spec_lengths: Optional[torch.Tensor] = None,
|
|
) -> Tuple[
|
|
torch.Tensor,
|
|
torch.Tensor,
|
|
torch.Tensor,
|
|
Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor],
|
|
]:
|
|
"""
|
|
Forward pass of the model.
|
|
|
|
Args:
|
|
c: WavLM features. Shape: (batch_size, c_seq_len).
|
|
spec: The input spectrogram. Shape: (batch_size, spec_seq_len, spec_dim).
|
|
g: The speaker embedding. Shape: (batch_size, spk_emb_dim).
|
|
mel: The input mel-spectrogram for the speaker encoder. Shape: (batch_size, mel_seq_len, mel_dim).
|
|
c_lengths: The lengths of the WavLM features. Shape: (batch_size,).
|
|
spec_lengths: The lengths of the spectrogram. Shape: (batch_size,).
|
|
|
|
Returns:
|
|
o: The output spectrogram. Shape: (batch_size, spec_seq_len, spec_dim).
|
|
ids_slice: The slice indices. Shape: (batch_size, num_slices).
|
|
spec_mask: The spectrogram mask. Shape: (batch_size, spec_seq_len).
|
|
(z, z_p, m_p, logs_p, m_q, logs_q): A tuple of latent variables.
|
|
"""
|
|
|
|
# If c_lengths is None, set it to the length of the last dimension of c
|
|
if c_lengths is None:
|
|
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
|
|
|
|
# If spec_lengths is None, set it to the length of the last dimension of spec
|
|
if spec_lengths is None:
|
|
spec_lengths = (torch.ones(spec.size(0)) * spec.size(-1)).to(spec.device)
|
|
|
|
# If use_spk is False, compute g from mel using enc_spk
|
|
g = None
|
|
if not self.use_spk:
|
|
g = self.enc_spk(mel).unsqueeze(-1)
|
|
|
|
# Compute m_p, logs_p, z, m_q, logs_q, and spec_mask using enc_p and enc_q
|
|
_, m_p, logs_p, _ = self.enc_p(c, c_lengths)
|
|
z, m_q, logs_q, spec_mask = self.enc_q(spec.transpose(1, 2), spec_lengths, g=g)
|
|
|
|
# Compute z_p using flow
|
|
z_p = self.flow(z, spec_mask, g=g)
|
|
|
|
# Randomly slice z and compute o using dec
|
|
z_slice, ids_slice = commons.rand_slice_segments(z, spec_lengths, self.segment_size)
|
|
o = self.dec(z_slice, g=g)
|
|
|
|
return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
|
|
|
@torch.no_grad()
|
|
def inference(self, c, g=None, mel=None, c_lengths=None):
|
|
"""
|
|
Inference pass of the model
|
|
|
|
Args:
|
|
c (torch.Tensor): Input tensor. Shape: (batch_size, c_seq_len).
|
|
g (torch.Tensor): Speaker embedding tensor. Shape: (batch_size, spk_emb_dim).
|
|
mel (torch.Tensor): Mel-spectrogram tensor. Shape: (batch_size, mel_seq_len, mel_dim).
|
|
c_lengths (torch.Tensor): Lengths of the input tensor. Shape: (batch_size,).
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor.
|
|
"""
|
|
if c_lengths == None:
|
|
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
|
|
if not self.use_spk:
|
|
g = self.enc_spk.embed_utterance(mel)
|
|
g = g.unsqueeze(-1)
|
|
z_p, m_p, logs_p, c_mask = self.enc_p(c, c_lengths)
|
|
z = self.flow(z_p, c_mask, g=g, reverse=True)
|
|
o = self.dec(z * c_mask, g=g)
|
|
return o
|
|
|
|
def extract_wavlm_features(self, y):
|
|
"""Extract WavLM features from an audio tensor.
|
|
|
|
Args:
|
|
y (torch.Tensor): Audio tensor. Shape: (batch_size, audio_seq_len).
|
|
"""
|
|
|
|
with torch.no_grad():
|
|
c = self.wavlm.extract_features(y)[0]
|
|
c = c.transpose(1, 2)
|
|
return c
|
|
|
|
def load_audio(self, wav):
|
|
"""Read and format the input audio."""
|
|
if isinstance(wav, str):
|
|
wav, _ = librosa.load(wav, sr=self.config.audio.input_sample_rate)
|
|
if isinstance(wav, np.ndarray):
|
|
wav = torch.from_numpy(wav).to(self.device)
|
|
if isinstance(wav, torch.Tensor):
|
|
wav = wav.to(self.device)
|
|
if isinstance(wav, list):
|
|
wav = torch.from_numpy(np.array(wav)).to(self.device)
|
|
return wav.float()
|
|
|
|
@torch.inference_mode()
|
|
def voice_conversion(self, src, tgt):
|
|
"""
|
|
Voice conversion pass of the model.
|
|
|
|
Args:
|
|
src (str or torch.Tensor): Source utterance.
|
|
tgt (str or torch.Tensor): Target utterance.
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor.
|
|
"""
|
|
|
|
wav_tgt = self.load_audio(tgt).cpu().numpy()
|
|
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
|
|
|
|
if self.config.model_args.use_spk:
|
|
g_tgt = self.enc_spk_ex.embed_utterance(wav_tgt)
|
|
g_tgt = torch.from_numpy(g_tgt)[None, :, None].to(self.device)
|
|
else:
|
|
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(self.device)
|
|
mel_tgt = mel_spectrogram_torch(
|
|
wav_tgt,
|
|
self.config.audio.filter_length,
|
|
self.config.audio.n_mel_channels,
|
|
self.config.audio.input_sample_rate,
|
|
self.config.audio.hop_length,
|
|
self.config.audio.win_length,
|
|
self.config.audio.mel_fmin,
|
|
self.config.audio.mel_fmax,
|
|
)
|
|
# src
|
|
wav_src = self.load_audio(src)
|
|
c = self.extract_wavlm_features(wav_src[None, :])
|
|
|
|
if self.config.model_args.use_spk:
|
|
audio = self.inference(c, g=g_tgt)
|
|
else:
|
|
audio = self.inference(c, mel=mel_tgt.transpose(1, 2))
|
|
audio = audio[0][0].data.cpu().float().numpy()
|
|
return audio
|
|
|
|
def eval_step():
|
|
...
|
|
|
|
@staticmethod
|
|
def init_from_config(config: "VitsConfig", samples: Union[List[List], List[Dict]] = None, verbose=True):
|
|
model = FreeVC(config)
|
|
return model
|
|
|
|
def load_checkpoint(self, config, checkpoint_path, eval=False, strict=True, cache=False):
|
|
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
|
|
self.load_state_dict(state["model"], strict=strict)
|
|
if eval:
|
|
self.eval()
|
|
|
|
def train_step():
|
|
...
|
|
|
|
|
|
@dataclass
|
|
class FreeVCConfig(BaseVCConfig):
|
|
"""Defines parameters for FreeVC End2End TTS model.
|
|
|
|
Args:
|
|
model (str):
|
|
Model name. Do not change unless you know what you are doing.
|
|
|
|
model_args (FreeVCArgs):
|
|
Model architecture arguments. Defaults to `FreeVCArgs()`.
|
|
|
|
audio (FreeVCAudioConfig):
|
|
Audio processing configuration. Defaults to `FreeVCAudioConfig()`.
|
|
|
|
grad_clip (List):
|
|
Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`.
|
|
|
|
lr_gen (float):
|
|
Initial learning rate for the generator. Defaults to 0.0002.
|
|
|
|
lr_disc (float):
|
|
Initial learning rate for the discriminator. Defaults to 0.0002.
|
|
|
|
lr_scheduler_gen (str):
|
|
Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to
|
|
`ExponentialLR`.
|
|
|
|
lr_scheduler_gen_params (dict):
|
|
Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
|
|
|
|
lr_scheduler_disc (str):
|
|
Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to
|
|
`ExponentialLR`.
|
|
|
|
lr_scheduler_disc_params (dict):
|
|
Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
|
|
|
|
scheduler_after_epoch (bool):
|
|
If true, step the schedulers after each epoch else after each step. Defaults to `False`.
|
|
|
|
optimizer (str):
|
|
Name of the optimizer to use with both the generator and the discriminator networks. One of the
|
|
`torch.optim.*`. Defaults to `AdamW`.
|
|
|
|
kl_loss_alpha (float):
|
|
Loss weight for KL loss. Defaults to 1.0.
|
|
|
|
disc_loss_alpha (float):
|
|
Loss weight for the discriminator loss. Defaults to 1.0.
|
|
|
|
gen_loss_alpha (float):
|
|
Loss weight for the generator loss. Defaults to 1.0.
|
|
|
|
feat_loss_alpha (float):
|
|
Loss weight for the feature matching loss. Defaults to 1.0.
|
|
|
|
mel_loss_alpha (float):
|
|
Loss weight for the mel loss. Defaults to 45.0.
|
|
|
|
return_wav (bool):
|
|
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`.
|
|
|
|
compute_linear_spec (bool):
|
|
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`.
|
|
|
|
use_weighted_sampler (bool):
|
|
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`.
|
|
|
|
weighted_sampler_attrs (dict):
|
|
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities
|
|
by overweighting `root_path` by 2.0. Defaults to `{}`.
|
|
|
|
weighted_sampler_multipliers (dict):
|
|
Weight each unique value of a key returned by the formatter for weighted sampling.
|
|
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`.
|
|
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`.
|
|
|
|
r (int):
|
|
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`.
|
|
|
|
add_blank (bool):
|
|
If true, a blank token is added in between every character. Defaults to `True`.
|
|
|
|
test_sentences (List[List]):
|
|
List of sentences with speaker and language information to be used for testing.
|
|
|
|
language_ids_file (str):
|
|
Path to the language ids file.
|
|
|
|
use_language_embedding (bool):
|
|
If true, language embedding is used. Defaults to `False`.
|
|
|
|
Note:
|
|
Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters.
|
|
|
|
Example:
|
|
|
|
>>> from TTS.tts.configs.freevc_config import FreeVCConfig
|
|
>>> config = FreeVCConfig()
|
|
"""
|
|
|
|
model: str = "freevc"
|
|
# model specific params
|
|
model_args: FreeVCArgs = field(default_factory=FreeVCArgs)
|
|
audio: FreeVCAudioConfig = field(default_factory=FreeVCAudioConfig)
|
|
|
|
# optimizer
|
|
# TODO with training support
|
|
|
|
# loss params
|
|
# TODO with training support
|
|
|
|
# data loader params
|
|
return_wav: bool = True
|
|
compute_linear_spec: bool = True
|
|
|
|
# sampler params
|
|
use_weighted_sampler: bool = False # TODO: move it to the base config
|
|
weighted_sampler_attrs: dict = field(default_factory=lambda: {})
|
|
weighted_sampler_multipliers: dict = field(default_factory=lambda: {})
|
|
|
|
# overrides
|
|
r: int = 1 # DO NOT CHANGE
|
|
add_blank: bool = True
|
|
|
|
# multi-speaker settings
|
|
# use speaker embedding layer
|
|
num_speakers: int = 0
|
|
speakers_file: str = None
|
|
speaker_embedding_channels: int = 256
|
|
|
|
# use d-vectors
|
|
use_d_vector_file: bool = False
|
|
d_vector_file: List[str] = None
|
|
d_vector_dim: int = None
|
|
|
|
def __post_init__(self):
|
|
for key, val in self.model_args.items():
|
|
if hasattr(self, key):
|
|
self[key] = val
|