mirror of https://github.com/coqui-ai/TTS.git
490 lines
20 KiB
Python
490 lines
20 KiB
Python
from dataclasses import dataclass, field
|
|
from typing import Tuple
|
|
|
|
import torch
|
|
from coqpit import Coqpit
|
|
from torch import nn
|
|
from torch.cuda.amp.autocast_mode import autocast
|
|
|
|
from TTS.tts.layers.feed_forward.decoder import Decoder
|
|
from TTS.tts.layers.feed_forward.encoder import Encoder
|
|
from TTS.tts.layers.generic.pos_encoding import PositionalEncoding
|
|
from TTS.tts.layers.glow_tts.duration_predictor import DurationPredictor
|
|
from TTS.tts.layers.glow_tts.monotonic_align import generate_path, maximum_path
|
|
from TTS.tts.models.base_tts import BaseTTS
|
|
from TTS.tts.utils.data import sequence_mask
|
|
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
|
|
from TTS.utils.audio import AudioProcessor
|
|
|
|
|
|
class AlignmentEncoder(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_query_channels=80,
|
|
in_key_channels=512,
|
|
attn_channels=80,
|
|
temperature=0.0005,
|
|
):
|
|
super().__init__()
|
|
self.temperature = temperature
|
|
self.softmax = torch.nn.Softmax(dim=3)
|
|
self.log_softmax = torch.nn.LogSoftmax(dim=3)
|
|
|
|
self.key_layer = nn.Sequential(
|
|
nn.Conv1d(
|
|
in_key_channels,
|
|
in_key_channels * 2,
|
|
kernel_size=3,
|
|
padding=1,
|
|
bias=True,
|
|
),
|
|
torch.nn.ReLU(),
|
|
nn.Conv1d(in_key_channels * 2, attn_channels, kernel_size=1, padding=0, bias=True),
|
|
)
|
|
|
|
self.query_layer = nn.Sequential(
|
|
nn.Conv1d(
|
|
in_query_channels,
|
|
in_query_channels * 2,
|
|
kernel_size=3,
|
|
padding=1,
|
|
bias=True,
|
|
),
|
|
torch.nn.ReLU(),
|
|
nn.Conv1d(in_query_channels * 2, in_query_channels, kernel_size=1, padding=0, bias=True),
|
|
torch.nn.ReLU(),
|
|
nn.Conv1d(in_query_channels, attn_channels, kernel_size=1, padding=0, bias=True),
|
|
)
|
|
|
|
def forward(
|
|
self, queries: torch.tensor, keys: torch.tensor, mask: torch.tensor = None, attn_prior: torch.tensor = None
|
|
) -> Tuple[torch.tensor, torch.tensor]:
|
|
"""Forward pass of the aligner encoder.
|
|
Shapes:
|
|
- queries: :math:`[B, C, T_de]`
|
|
- keys: :math:`[B, C_emb, T_en]`
|
|
- mask: :math:`[B, T_de]`
|
|
Output:
|
|
attn (torch.tensor): :math:`[B, 1, T_en, T_de]` soft attention mask.
|
|
attn_logp (torch.tensor): :math:`[ßB, 1, T_en , T_de]` log probabilities.
|
|
"""
|
|
key_out = self.key_layer(keys)
|
|
query_out = self.query_layer(queries)
|
|
attn_factor = (query_out[:, :, :, None] - key_out[:, :, None]) ** 2
|
|
attn_factor = -self.temperature * attn_factor.sum(1, keepdim=True)
|
|
if attn_prior is not None:
|
|
attn_logp = self.log_softmax(attn_factor) + torch.log(attn_prior[:, None] + 1e-8)
|
|
if mask is not None:
|
|
attn_logp.data.masked_fill_(~mask.bool().unsqueeze(2), -float("inf"))
|
|
attn = self.softmax(attn_logp)
|
|
return attn, attn_logp
|
|
|
|
|
|
@dataclass
|
|
class FastPitchArgs(Coqpit):
|
|
num_chars: int = None
|
|
out_channels: int = 80
|
|
hidden_channels: int = 256
|
|
num_speakers: int = 0
|
|
duration_predictor_hidden_channels: int = 256
|
|
duration_predictor_dropout: float = 0.1
|
|
duration_predictor_kernel_size: int = 3
|
|
duration_predictor_dropout_p: float = 0.1
|
|
pitch_predictor_hidden_channels: int = 256
|
|
pitch_predictor_dropout: float = 0.1
|
|
pitch_predictor_kernel_size: int = 3
|
|
pitch_predictor_dropout_p: float = 0.1
|
|
pitch_embedding_kernel_size: int = 3
|
|
positional_encoding: bool = True
|
|
length_scale: int = 1
|
|
encoder_type: str = "fftransformer"
|
|
encoder_params: dict = field(
|
|
default_factory=lambda: {"hidden_channels_ffn": 1024, "num_heads": 1, "num_layers": 6, "dropout_p": 0.1}
|
|
)
|
|
decoder_type: str = "fftransformer"
|
|
decoder_params: dict = field(
|
|
default_factory=lambda: {"hidden_channels_ffn": 1024, "num_heads": 1, "num_layers": 6, "dropout_p": 0.1}
|
|
)
|
|
use_d_vector: bool = False
|
|
d_vector_dim: int = 0
|
|
detach_duration_predictor: bool = False
|
|
max_duration: int = 75
|
|
use_gt_duration: bool = True
|
|
use_aligner: bool = True
|
|
|
|
|
|
class FastPitch(BaseTTS):
|
|
"""FastPitch model. Very similart to SpeedySpeech model but with pitch prediction.
|
|
|
|
Paper abstract:
|
|
We present FastPitch, a fully-parallel text-to-speech model based on FastSpeech, conditioned on fundamental
|
|
frequency contours. The model predicts pitch contours during inference. By altering these predictions,
|
|
the generated speech can be more expressive, better match the semantic of the utterance, and in the end
|
|
more engaging to the listener. Uniformly increasing or decreasing pitch with FastPitch generates speech
|
|
that resembles the voluntary modulation of voice. Conditioning on frequency contours improves the overall
|
|
quality of synthesized speech, making it comparable to state-of-the-art. It does not introduce an overhead,
|
|
and FastPitch retains the favorable, fully-parallel Transformer architecture, with over 900x real-time
|
|
factor for mel-spectrogram synthesis of a typical utterance."
|
|
|
|
Notes:
|
|
TODO
|
|
|
|
Args:
|
|
config (Coqpit): Model coqpit class.
|
|
|
|
Examples:
|
|
>>> from TTS.tts.models.fast_pitch import FastPitch, FastPitchArgs
|
|
>>> config = FastPitchArgs()
|
|
>>> model = FastPitch(config)
|
|
"""
|
|
|
|
# pylint: disable=dangerous-default-value
|
|
def __init__(self, config: Coqpit):
|
|
|
|
super().__init__()
|
|
|
|
if "characters" in config:
|
|
# loading from FasrPitchConfig
|
|
_, self.config, num_chars = self.get_characters(config)
|
|
config.model_args.num_chars = num_chars
|
|
args = self.config.model_args
|
|
else:
|
|
# loading from FastPitchArgs
|
|
self.config = config
|
|
args = config
|
|
|
|
self.max_duration = args.max_duration
|
|
self.use_gt_duration = args.use_gt_duration
|
|
self.use_aligner = args.use_aligner
|
|
|
|
self.length_scale = float(args.length_scale) if isinstance(args.length_scale, int) else args.length_scale
|
|
|
|
self.emb = nn.Embedding(config.model_args.num_chars, config.model_args.hidden_channels)
|
|
|
|
self.encoder = Encoder(
|
|
config.model_args.hidden_channels,
|
|
config.model_args.hidden_channels,
|
|
config.model_args.encoder_type,
|
|
config.model_args.encoder_params,
|
|
config.model_args.d_vector_dim,
|
|
)
|
|
|
|
if config.model_args.positional_encoding:
|
|
self.pos_encoder = PositionalEncoding(config.model_args.hidden_channels)
|
|
|
|
self.decoder = Decoder(
|
|
config.model_args.out_channels,
|
|
config.model_args.hidden_channels,
|
|
config.model_args.decoder_type,
|
|
config.model_args.decoder_params,
|
|
)
|
|
|
|
self.duration_predictor = DurationPredictor(
|
|
config.model_args.hidden_channels + config.model_args.d_vector_dim,
|
|
config.model_args.duration_predictor_hidden_channels,
|
|
config.model_args.duration_predictor_kernel_size,
|
|
config.model_args.duration_predictor_dropout_p,
|
|
)
|
|
|
|
self.pitch_predictor = DurationPredictor(
|
|
config.model_args.hidden_channels + config.model_args.d_vector_dim,
|
|
config.model_args.pitch_predictor_hidden_channels,
|
|
config.model_args.pitch_predictor_kernel_size,
|
|
config.model_args.pitch_predictor_dropout_p,
|
|
)
|
|
|
|
self.pitch_emb = nn.Conv1d(
|
|
1,
|
|
config.model_args.hidden_channels,
|
|
kernel_size=config.model_args.pitch_embedding_kernel_size,
|
|
padding=int((config.model_args.pitch_embedding_kernel_size - 1) / 2),
|
|
)
|
|
|
|
if config.model_args.num_speakers > 1 and not config.model_args.use_d_vector:
|
|
# speaker embedding layer
|
|
self.emb_g = nn.Embedding(config.model_args.num_speakers, config.model_args.d_vector_dim)
|
|
nn.init.uniform_(self.emb_g.weight, -0.1, 0.1)
|
|
|
|
if config.model_args.d_vector_dim > 0 and config.model_args.d_vector_dim != config.model_args.hidden_channels:
|
|
self.proj_g = nn.Conv1d(config.model_args.d_vector_dim, config.model_args.hidden_channels, 1)
|
|
|
|
if args.use_aligner:
|
|
self.aligner = AlignmentEncoder(args.out_channels, args.hidden_channels)
|
|
|
|
@staticmethod
|
|
def expand_encoder_outputs(en, dr, x_mask, y_mask):
|
|
"""Generate attention alignment map from durations and
|
|
expand encoder outputs
|
|
|
|
Example:
|
|
encoder output: [a,b,c,d]
|
|
durations: [1, 3, 2, 1]
|
|
|
|
expanded: [a, b, b, b, c, c, d]
|
|
attention map: [[0, 0, 0, 0, 0, 0, 1],
|
|
[0, 0, 0, 0, 1, 1, 0],
|
|
[0, 1, 1, 1, 0, 0, 0],
|
|
[1, 0, 0, 0, 0, 0, 0]]
|
|
"""
|
|
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
|
|
attn = generate_path(dr, attn_mask.squeeze(1)).to(en.dtype)
|
|
o_en_ex = torch.matmul(attn.squeeze(1).transpose(1, 2), en.transpose(1, 2)).transpose(1, 2)
|
|
return o_en_ex, attn
|
|
|
|
def format_durations(self, o_dr_log, x_mask):
|
|
o_dr = (torch.exp(o_dr_log) - 1) * x_mask * self.length_scale
|
|
o_dr[o_dr < 1] = 1.0
|
|
o_dr = torch.round(o_dr)
|
|
return o_dr
|
|
|
|
@staticmethod
|
|
def _concat_speaker_embedding(o_en, g):
|
|
g_exp = g.expand(-1, -1, o_en.size(-1)) # [B, C, T_en]
|
|
o_en = torch.cat([o_en, g_exp], 1)
|
|
return o_en
|
|
|
|
def _sum_speaker_embedding(self, x, g):
|
|
# project g to decoder dim.
|
|
if hasattr(self, "proj_g"):
|
|
g = self.proj_g(g)
|
|
return x + g
|
|
|
|
def _forward_encoder(self, x, x_lengths, g=None):
|
|
if hasattr(self, "emb_g"):
|
|
g = nn.functional.normalize(self.emb_g(g)) # [B, C, 1]
|
|
|
|
if g is not None:
|
|
g = g.unsqueeze(-1)
|
|
|
|
# [B, T, C]
|
|
x_emb = self.emb(x)
|
|
|
|
# compute sequence masks
|
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.shape[1]), 1).to(x.dtype)
|
|
|
|
# encoder pass
|
|
o_en = self.encoder(torch.transpose(x_emb, 1, -1), x_mask)
|
|
|
|
# speaker conditioning for duration predictor
|
|
if g is not None:
|
|
o_en_dp = self._concat_speaker_embedding(o_en, g)
|
|
else:
|
|
o_en_dp = o_en
|
|
return o_en, o_en_dp, x_mask, g, x_emb
|
|
|
|
def _forward_decoder(self, o_en, o_en_dp, dr, x_mask, y_lengths, g):
|
|
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(o_en_dp.dtype)
|
|
# expand o_en with durations
|
|
o_en_ex, attn = self.expand_encoder_outputs(o_en, dr, x_mask, y_mask)
|
|
# positional encoding
|
|
if hasattr(self, "pos_encoder"):
|
|
o_en_ex = self.pos_encoder(o_en_ex, y_mask)
|
|
# speaker embedding
|
|
if g is not None:
|
|
o_en_ex = self._sum_speaker_embedding(o_en_ex, g)
|
|
# decoder pass
|
|
o_de = self.decoder(o_en_ex, y_mask, g=g)
|
|
return o_de.transpose(1, 2), attn.transpose(1, 2)
|
|
|
|
def _forward_pitch_predictor(self, o_en, x_mask, pitch=None, dr=None):
|
|
o_pitch = self.pitch_predictor(o_en, x_mask)
|
|
if pitch is not None:
|
|
avg_pitch = average_pitch(pitch, dr)
|
|
o_pitch_emb = self.pitch_emb(avg_pitch)
|
|
return o_pitch_emb, o_pitch, avg_pitch
|
|
o_pitch_emb = self.pitch_emb(o_pitch)
|
|
return o_pitch_emb, o_pitch
|
|
|
|
def _forward_aligner(self, y, embedding, x_mask, y_mask):
|
|
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(y_mask, 2)
|
|
alignment_soft, alignment_logprob = self.aligner(y.transpose(1, 2), embedding.transpose(1, 2), x_mask, None)
|
|
alignment_mas = maximum_path(
|
|
alignment_soft.squeeze(1).transpose(1, 2).contiguous(), attn_mask.squeeze(1).contiguous()
|
|
)
|
|
o_alignment_dur = torch.sum(alignment_mas, -1)
|
|
return o_alignment_dur, alignment_logprob, alignment_mas
|
|
|
|
def forward(
|
|
self, x, x_lengths, y_lengths, y=None, dr=None, pitch=None, aux_input={"d_vectors": 0, "speaker_ids": None}
|
|
): # pylint: disable=unused-argument
|
|
"""
|
|
Shapes:
|
|
x: :math:`[B, T_max]`
|
|
x_lengths: :math:`[B]`
|
|
y_lengths: :math:`[B]`
|
|
y: :math:`[B, T_max2]`
|
|
dr: :math:`[B, T_max]`
|
|
g: :math:`[B, C]`
|
|
pitch: :math:`[B, 1, T]`
|
|
"""
|
|
g = aux_input["d_vectors"] if "d_vectors" in aux_input else None
|
|
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(x.dtype)
|
|
o_en, o_en_dp, x_mask, g, x_emb = self._forward_encoder(x, x_lengths, g)
|
|
if self.config.model_args.detach_duration_predictor:
|
|
o_dr_log = self.duration_predictor(o_en_dp.detach(), x_mask)
|
|
else:
|
|
o_dr_log = self.duration_predictor(o_en_dp, x_mask)
|
|
o_dr = torch.clamp(torch.exp(o_dr_log) - 1, 0, self.max_duration)
|
|
if self.use_aligner:
|
|
o_alignment_dur, alignment_logprob, alignment_mas = self._forward_aligner(y, x_emb, x_mask, y_mask)
|
|
dr = o_alignment_dur
|
|
o_pitch_emb, o_pitch, avg_pitch = self._forward_pitch_predictor(o_en_dp, x_mask, pitch, dr)
|
|
o_en = o_en + o_pitch_emb
|
|
o_de, attn = self._forward_decoder(o_en, o_en_dp, dr, x_mask, y_lengths, g=g)
|
|
outputs = {
|
|
"model_outputs": o_de,
|
|
"durations_log": o_dr_log.squeeze(1),
|
|
"durations": o_dr.squeeze(1),
|
|
"pitch": o_pitch,
|
|
"pitch_gt": avg_pitch,
|
|
"alignments": attn,
|
|
"alignment_mas": alignment_mas.transpose(1, 2),
|
|
"o_alignment_dur": o_alignment_dur,
|
|
"alignment_logprob": alignment_logprob,
|
|
}
|
|
return outputs
|
|
|
|
@torch.no_grad()
|
|
def inference(self, x, aux_input={"d_vectors": None, "speaker_ids": None}): # pylint: disable=unused-argument
|
|
"""
|
|
Shapes:
|
|
x: [B, T_max]
|
|
x_lengths: [B]
|
|
g: [B, C]
|
|
"""
|
|
g = aux_input["d_vectors"] if "d_vectors" in aux_input else None
|
|
x_lengths = torch.tensor(x.shape[1:2]).to(x.device)
|
|
# input sequence should be greated than the max convolution size
|
|
inference_padding = 5
|
|
if x.shape[1] < 13:
|
|
inference_padding += 13 - x.shape[1]
|
|
# pad input to prevent dropping the last word
|
|
x = torch.nn.functional.pad(x, pad=(0, inference_padding), mode="constant", value=0)
|
|
o_en, o_en_dp, x_mask, g = self._forward_encoder(x, x_lengths, g)
|
|
# duration predictor pass
|
|
o_dr_log = self.duration_predictor(o_en_dp, x_mask)
|
|
o_dr = self.format_durations(o_dr_log, x_mask).squeeze(1)
|
|
# pitch predictor pass
|
|
o_pitch_emb, o_pitch = self._forward_pitch_predictor(o_en_dp, x_mask)
|
|
# if pitch_transform is not None:
|
|
# if self.pitch_std[0] == 0.0:
|
|
# # XXX LJSpeech-1.1 defaults
|
|
# mean, std = 218.14, 67.24
|
|
# else:
|
|
# mean, std = self.pitch_mean[0], self.pitch_std[0]
|
|
# pitch_pred = pitch_transform(pitch_pred, enc_mask.sum(dim=(1,2)), mean, std)
|
|
|
|
# if pitch_tgt is None:
|
|
# pitch_emb = self.pitch_emb(pitch_pred.unsqueeze(1)).transpose(1, 2)
|
|
# else:
|
|
# pitch_emb = self.pitch_emb(pitch_tgt.unsqueeze(1)).transpose(1, 2)
|
|
o_en = o_en + o_pitch_emb
|
|
y_lengths = o_dr.sum(1)
|
|
o_de, attn = self._forward_decoder(o_en, o_en_dp, o_dr, x_mask, y_lengths, g=g)
|
|
outputs = {
|
|
"model_outputs": o_de.transpose(1, 2),
|
|
"alignments": attn,
|
|
"pitch": o_pitch,
|
|
"durations_log": o_dr_log,
|
|
}
|
|
return outputs
|
|
|
|
def train_step(self, batch: dict, criterion: nn.Module):
|
|
text_input = batch["text_input"]
|
|
text_lengths = batch["text_lengths"]
|
|
mel_input = batch["mel_input"]
|
|
mel_lengths = batch["mel_lengths"]
|
|
pitch = batch["pitch"]
|
|
d_vectors = batch["d_vectors"]
|
|
speaker_ids = batch["speaker_ids"]
|
|
durations = batch["durations"]
|
|
|
|
aux_input = {"d_vectors": d_vectors, "speaker_ids": speaker_ids}
|
|
outputs = self.forward(
|
|
text_input, text_lengths, mel_lengths, y=mel_input, dr=durations, pitch=pitch, aux_input=aux_input
|
|
)
|
|
|
|
if self.use_aligner:
|
|
durations = outputs["o_alignment_dur"]
|
|
|
|
with autocast(enabled=False): # use float32 for the criterion
|
|
# compute loss
|
|
loss_dict = criterion(
|
|
outputs["model_outputs"],
|
|
mel_input,
|
|
mel_lengths,
|
|
outputs["durations_log"],
|
|
durations,
|
|
outputs["pitch"],
|
|
outputs["pitch_gt"],
|
|
text_lengths,
|
|
outputs["alignment_logprob"],
|
|
)
|
|
|
|
# compute duration error
|
|
durations_pred = outputs["durations"]
|
|
duration_error = torch.abs(durations - durations_pred).sum() / text_lengths.sum()
|
|
loss_dict["duration_error"] = duration_error
|
|
return outputs, loss_dict
|
|
|
|
def train_log(self, ap: AudioProcessor, batch: dict, outputs: dict): # pylint: disable=no-self-use
|
|
model_outputs = outputs["model_outputs"]
|
|
alignments = outputs["alignments"]
|
|
mel_input = batch["mel_input"]
|
|
|
|
pred_spec = model_outputs[0].data.cpu().numpy()
|
|
gt_spec = mel_input[0].data.cpu().numpy()
|
|
align_img = alignments[0].data.cpu().numpy()
|
|
|
|
figures = {
|
|
"prediction": plot_spectrogram(pred_spec, ap, output_fig=False),
|
|
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
|
|
"alignment": plot_alignment(align_img, output_fig=False),
|
|
}
|
|
|
|
if self.config.model_args.use_aligner and self.training:
|
|
alignment_mas = outputs["alignment_mas"][0].data.cpu().numpy()
|
|
figures["alignment_mas"] = plot_alignment(alignment_mas, output_fig=False)
|
|
|
|
# Sample audio
|
|
train_audio = ap.inv_melspectrogram(pred_spec.T)
|
|
return figures, {"audio": train_audio}
|
|
|
|
def eval_step(self, batch: dict, criterion: nn.Module):
|
|
return self.train_step(batch, criterion)
|
|
|
|
def eval_log(self, ap: AudioProcessor, batch: dict, outputs: dict):
|
|
return self.train_log(ap, batch, outputs)
|
|
|
|
def load_checkpoint(
|
|
self, config, checkpoint_path, eval=False
|
|
): # pylint: disable=unused-argument, redefined-builtin
|
|
state = torch.load(checkpoint_path, map_location=torch.device("cpu"))
|
|
self.load_state_dict(state["model"])
|
|
if eval:
|
|
self.eval()
|
|
assert not self.training
|
|
|
|
def get_criterion(self):
|
|
from TTS.tts.layers.losses import FastPitchLoss # pylint: disable=import-outside-toplevel
|
|
|
|
return FastPitchLoss(self.config)
|
|
|
|
|
|
def average_pitch(pitch, durs):
|
|
durs_cums_ends = torch.cumsum(durs, dim=1).long()
|
|
durs_cums_starts = torch.nn.functional.pad(durs_cums_ends[:, :-1], (1, 0))
|
|
pitch_nonzero_cums = torch.nn.functional.pad(torch.cumsum(pitch != 0.0, dim=2), (1, 0))
|
|
pitch_cums = torch.nn.functional.pad(torch.cumsum(pitch, dim=2), (1, 0))
|
|
|
|
bs, l = durs_cums_ends.size()
|
|
n_formants = pitch.size(1)
|
|
dcs = durs_cums_starts[:, None, :].expand(bs, n_formants, l)
|
|
dce = durs_cums_ends[:, None, :].expand(bs, n_formants, l)
|
|
|
|
pitch_sums = (torch.gather(pitch_cums, 2, dce) - torch.gather(pitch_cums, 2, dcs)).float()
|
|
pitch_nelems = (torch.gather(pitch_nonzero_cums, 2, dce) - torch.gather(pitch_nonzero_cums, 2, dcs)).float()
|
|
|
|
pitch_avg = torch.where(pitch_nelems == 0.0, pitch_nelems, pitch_sums / pitch_nelems)
|
|
return pitch_avg
|