coqui-tts/TTS/bin/extract_tts_spectrograms.py

280 lines
9.7 KiB
Python
Executable File

#!/usr/bin/env python3
"""Extract Mel spectrograms with teacher forcing."""
import os
import argparse
import numpy as np
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.utils.generic_utils import setup_model
from TTS.tts.utils.speakers import parse_speakers
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.config import load_config
from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import count_parameters
use_cuda = torch.cuda.is_available()
def setup_loader(ap, r, verbose=False):
dataset = MyDataset(
r,
c.text_cleaner,
compute_linear_spec=False,
meta_data=meta_data,
ap=ap,
tp=c.characters if "characters" in c.keys() else None,
add_blank=c["add_blank"] if "add_blank" in c.keys() else False,
batch_group_size=0,
min_seq_len=c.min_seq_len,
max_seq_len=c.max_seq_len,
phoneme_cache_path=c.phoneme_cache_path,
use_phonemes=c.use_phonemes,
phoneme_language=c.phoneme_language,
enable_eos_bos=c.enable_eos_bos_chars,
use_noise_augment=False,
verbose=verbose,
speaker_mapping=speaker_mapping
if c.use_speaker_embedding and c.use_external_speaker_embedding_file
else None,
)
if c.use_phonemes and c.compute_input_seq_cache:
# precompute phonemes to have a better estimate of sequence lengths.
dataset.compute_input_seq(c.num_loader_workers)
dataset.sort_items()
loader = DataLoader(
dataset,
batch_size=c.batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
drop_last=False,
sampler=None,
num_workers=c.num_loader_workers,
pin_memory=False,
)
return loader
def set_filename(wav_path, out_path):
wav_file = os.path.basename(wav_path)
file_name = wav_file.split('.')[0]
os.makedirs(os.path.join(out_path, "quant"), exist_ok=True)
os.makedirs(os.path.join(out_path, "mel"), exist_ok=True)
os.makedirs(os.path.join(out_path, "wav_gl"), exist_ok=True)
os.makedirs(os.path.join(out_path, "wav"), exist_ok=True)
wavq_path = os.path.join(out_path, "quant", file_name)
mel_path = os.path.join(out_path, "mel", file_name)
wav_gl_path = os.path.join(out_path, "wav_gl", file_name+'.wav')
wav_path = os.path.join(out_path, "wav", file_name+'.wav')
return file_name, wavq_path, mel_path, wav_gl_path, wav_path
def format_data(data):
# setup input data
text_input = data[0]
text_lengths = data[1]
speaker_names = data[2]
mel_input = data[4]
mel_lengths = data[5]
item_idx = data[7]
attn_mask = data[9]
avg_text_length = torch.mean(text_lengths.float())
avg_spec_length = torch.mean(mel_lengths.float())
if c.use_speaker_embedding:
if c.use_external_speaker_embedding_file:
speaker_embeddings = data[8]
speaker_ids = None
else:
speaker_ids = [speaker_mapping[speaker_name] for speaker_name in speaker_names]
speaker_ids = torch.LongTensor(speaker_ids)
speaker_embeddings = None
else:
speaker_embeddings = None
speaker_ids = None
# dispatch data to GPU
if use_cuda:
text_input = text_input.cuda(non_blocking=True)
text_lengths = text_lengths.cuda(non_blocking=True)
mel_input = mel_input.cuda(non_blocking=True)
mel_lengths = mel_lengths.cuda(non_blocking=True)
if speaker_ids is not None:
speaker_ids = speaker_ids.cuda(non_blocking=True)
if speaker_embeddings is not None:
speaker_embeddings = speaker_embeddings.cuda(non_blocking=True)
if attn_mask is not None:
attn_mask = attn_mask.cuda(non_blocking=True)
return (
text_input,
text_lengths,
mel_input,
mel_lengths,
speaker_ids,
speaker_embeddings,
avg_text_length,
avg_spec_length,
attn_mask,
item_idx,
)
@torch.no_grad()
def inference(model_name, model, ap, text_input, text_lengths, mel_input, mel_lengths, attn_mask=None, speaker_ids=None, speaker_embeddings=None):
if model_name == "glow_tts":
mel_input = mel_input.permute(0, 2, 1) # B x D x T
speaker_c = None
if speaker_ids is not None:
speaker_c = speaker_ids
elif speaker_embeddings is not None:
speaker_c = speaker_embeddings
model_output, *_ = model.inference_with_MAS(
text_input, text_lengths, mel_input, mel_lengths, attn_mask, g=speaker_c
)
model_output = model_output.transpose(1, 2).detach().cpu().numpy()
elif "tacotron" in model_name:
_, postnet_outputs, *_ = model(
text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
# normalize tacotron output
if model_name == "tacotron":
mel_specs = []
postnet_outputs = postnet_outputs.data.cpu().numpy()
for b in range(postnet_outputs.shape[0]):
postnet_output = postnet_outputs[b]
mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T))
model_output = torch.stack(mel_specs).cpu().numpy()
elif model_name == "tacotron2":
model_output = postnet_outputs.detach().cpu().numpy()
return model_output
def extract_spectrograms(data_loader, model, ap, output_path, quantized_wav=False, save_audio=False, debug=False, metada_name="metada.txt"):
model.eval()
export_metadata = []
for _, data in tqdm(enumerate(data_loader), total=len(data_loader)):
# format data
(
text_input,
text_lengths,
mel_input,
mel_lengths,
speaker_ids,
speaker_embeddings,
_,
_,
attn_mask,
item_idx,
) = format_data(data)
model_output = inference(c.model.lower(), model, ap, text_input, text_lengths, mel_input, mel_lengths, attn_mask, speaker_ids, speaker_embeddings)
for idx in range(text_input.shape[0]):
wav_file_path = item_idx[idx]
wav = ap.load_wav(wav_file_path)
_, wavq_path, mel_path, wav_gl_path, wav_path = set_filename(wav_file_path, output_path)
# quantize and save wav
if quantized_wav:
wavq = ap.quantize(wav)
np.save(wavq_path, wavq)
# save TTS mel
mel = model_output[idx]
mel_length = mel_lengths[idx]
mel = mel[:mel_length, :].T
np.save(mel_path, mel)
export_metadata.append([wav_file_path, mel_path])
if save_audio:
ap.save_wav(wav, wav_path)
if debug:
print("Audio for debug saved at:", wav_gl_path)
wav = ap.inv_melspectrogram(mel)
ap.save_wav(wav, wav_gl_path)
with open(os.path.join(output_path, metada_name), "w") as f:
for data in export_metadata:
f.write(f"{data[0]}|{data[1]+'.npy'}\n")
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data, symbols, phonemes, model_characters, speaker_mapping
# Audio processor
ap = AudioProcessor(**c.audio)
if "characters" in c.keys() and c['characters']:
symbols, phonemes = make_symbols(**c.characters)
# set model characters
model_characters = phonemes if c.use_phonemes else symbols
num_chars = len(model_characters)
# load data instances
meta_data_train, meta_data_eval = load_meta_data(c.datasets)
# use eval and training partitions
meta_data = meta_data_train + meta_data_eval
# parse speakers
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(c, args, meta_data_train, None)
# setup model
model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim=speaker_embedding_dim)
# restore model
checkpoint = torch.load(args.checkpoint_path, map_location="cpu")
model.load_state_dict(checkpoint["model"])
if use_cuda:
model.cuda()
num_params = count_parameters(model)
print("\n > Model has {} parameters".format(num_params), flush=True)
# set r
r = 1 if c.model.lower() == "glow_tts" else model.decoder.r
own_loader = setup_loader(ap, r, verbose=True)
extract_spectrograms(own_loader, model, ap, args.output_path, quantized_wav=args.quantized, save_audio=args.save_audio, debug=args.debug, metada_name="metada.txt")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--config_path',
type=str,
help='Path to config file for training.',
required=True)
parser.add_argument(
'--checkpoint_path',
type=str,
help='Model file to be restored.',
required=True)
parser.add_argument(
'--output_path',
type=str,
help='Path to save mel specs',
required=True)
parser.add_argument('--debug',
default=False,
action='store_true',
help='Save audio files for debug')
parser.add_argument('--save_audio',
default=False,
action='store_true',
help='Save audio files')
parser.add_argument('--quantized',
action='store_true',
help='Save quantized audio files')
args = parser.parse_args()
c = load_config(args.config_path)
main(args)