coqui-tts/TTS/vocoder/layers/wavegrad.py

147 lines
4.7 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import weight_norm
class Conv1d(nn.Conv1d):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
nn.init.orthogonal_(self.weight)
nn.init.zeros_(self.bias)
class PositionalEncoding(nn.Module):
"""Positional encoding with noise level conditioning"""
def __init__(self, n_channels, max_len=10000):
super().__init__()
self.n_channels = n_channels
self.max_len = max_len
self.C = 5000
self.pe = torch.zeros(0, 0)
def forward(self, x, noise_level):
if x.shape[2] > self.pe.shape[1]:
self.init_pe_matrix(x.shape[1] ,x.shape[2], x)
return x + noise_level[..., None, None] + self.pe[:, :x.size(2)].repeat(x.shape[0], 1, 1) / self.C
def init_pe_matrix(self, n_channels, max_len, x):
pe = torch.zeros(max_len, n_channels)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.pow(10000, torch.arange(0, n_channels, 2).float() / n_channels)
pe[:, 0::2] = torch.sin(position / div_term)
pe[:, 1::2] = torch.cos(position / div_term)
self.pe = pe.transpose(0, 1).to(x)
class FiLM(nn.Module):
def __init__(self, input_size, output_size):
super().__init__()
self.encoding = PositionalEncoding(input_size)
self.input_conv = weight_norm(nn.Conv1d(input_size, input_size, 3, padding=1))
self.output_conv = weight_norm(nn.Conv1d(input_size, output_size * 2, 3, padding=1))
nn.init.xavier_uniform_(self.input_conv.weight)
nn.init.xavier_uniform_(self.output_conv.weight)
nn.init.zeros_(self.input_conv.bias)
nn.init.zeros_(self.output_conv.bias)
def forward(self, x, noise_scale):
x = self.input_conv(x)
x = F.leaky_relu(x, 0.2)
x = self.encoding(x, noise_scale)
shift, scale = torch.chunk(self.output_conv(x), 2, dim=1)
return shift, scale
@torch.jit.script
def shif_and_scale(x, scale, shift):
o = shift + scale * x
return o
class UBlock(nn.Module):
def __init__(self, input_size, hidden_size, factor, dilation):
super().__init__()
assert isinstance(dilation, (list, tuple))
assert len(dilation) == 4
self.factor = factor
self.block1 = weight_norm(Conv1d(input_size, hidden_size, 1))
self.block2 = nn.ModuleList([
weight_norm(Conv1d(input_size,
hidden_size,
3,
dilation=dilation[0],
padding=dilation[0])),
weight_norm(Conv1d(hidden_size,
hidden_size,
3,
dilation=dilation[1],
padding=dilation[1]))
])
self.block3 = nn.ModuleList([
weight_norm(Conv1d(hidden_size,
hidden_size,
3,
dilation=dilation[2],
padding=dilation[2])),
weight_norm(Conv1d(hidden_size,
hidden_size,
3,
dilation=dilation[3],
padding=dilation[3]))
])
def forward(self, x, shift, scale):
o1 = F.interpolate(x, size=x.shape[-1] * self.factor)
o1 = self.block1(o1)
o2 = F.leaky_relu(x, 0.2)
o2 = F.interpolate(o2, size=x.shape[-1] * self.factor)
o2 = self.block2[0](o2)
o2 = shif_and_scale(o2, scale, shift)
o2 = F.leaky_relu(o2, 0.2)
o2 = self.block2[1](o2)
x = o1 + o2
o3 = shif_and_scale(x, scale, shift)
o3 = F.leaky_relu(o3, 0.2)
o3 = self.block3[0](o3)
o3 = shif_and_scale(o3, scale, shift)
o3 = F.leaky_relu(o3, 0.2)
o3 = self.block3[1](o3)
o = x + o3
return o
class DBlock(nn.Module):
def __init__(self, input_size, hidden_size, factor):
super().__init__()
self.factor = factor
self.residual_dense = weight_norm(Conv1d(input_size, hidden_size, 1))
self.conv = nn.ModuleList([
weight_norm(Conv1d(input_size, hidden_size, 3, dilation=1, padding=1)),
weight_norm(Conv1d(hidden_size, hidden_size, 3, dilation=2, padding=2)),
weight_norm(Conv1d(hidden_size, hidden_size, 3, dilation=4, padding=4)),
])
def forward(self, x):
size = x.shape[-1] // self.factor
residual = self.residual_dense(x)
residual = F.interpolate(residual, size=size)
x = F.interpolate(x, size=size)
for layer in self.conv:
x = F.leaky_relu(x, 0.2)
x = layer(x)
return x + residual