mirror of https://github.com/coqui-ai/TTS.git
177 lines
6.1 KiB
Python
177 lines
6.1 KiB
Python
import torch
|
|
import librosa
|
|
import soundfile as sf
|
|
import numpy as np
|
|
import scipy.io
|
|
import scipy.signal
|
|
|
|
from TTS.tts.utils.stft_torch import STFT
|
|
|
|
class AudioProcessor(object):
|
|
def __init__(self,
|
|
sample_rate=None,
|
|
num_mels=None,
|
|
frame_shift_ms=None,
|
|
frame_length_ms=None,
|
|
hop_length=None,
|
|
win_length=None,
|
|
num_freq=None,
|
|
power=None,
|
|
mel_fmin=None,
|
|
mel_fmax=None,
|
|
griffin_lim_iters=None,
|
|
do_trim_silence=False,
|
|
trim_db=60,
|
|
sound_norm=False,
|
|
use_cuda=False,
|
|
**_):
|
|
|
|
print(" > Setting up Torch based Audio Processor...")
|
|
# setup class attributed
|
|
self.sample_rate = sample_rate
|
|
self.num_mels = num_mels
|
|
self.frame_shift_ms = frame_shift_ms
|
|
self.frame_length_ms = frame_length_ms
|
|
self.num_freq = num_freq
|
|
self.power = power
|
|
self.griffin_lim_iters = griffin_lim_iters
|
|
self.mel_fmin = mel_fmin or 0
|
|
self.mel_fmax = mel_fmax
|
|
self.do_trim_silence = do_trim_silence
|
|
self.trim_db = trim_db
|
|
self.sound_norm = sound_norm
|
|
# setup stft parameters
|
|
if hop_length is None:
|
|
self.n_fft, self.hop_length, self.win_length = self._stft_parameters()
|
|
else:
|
|
self.hop_length = hop_length
|
|
self.win_length = win_length
|
|
self.n_fft = (self.num_freq - 1) * 2
|
|
members = vars(self)
|
|
# print class attributes
|
|
for key, value in members.items():
|
|
print(" | > {}:{}".format(key, value))
|
|
# create spectrogram utils
|
|
self.mel_basis = torch.from_numpy(self._build_mel_basis()).float()
|
|
self.inv_mel_basis = torch.from_numpy(np.linalg.pinv(self._build_mel_basis())).float()
|
|
self.stft = STFT(filter_length=self.n_fft, hop_length=self.hop_length, win_length=self.win_length,
|
|
window='hann', padding_mode='constant', use_cuda=use_cuda)
|
|
|
|
### setting up the parameters ###
|
|
def _build_mel_basis(self):
|
|
if self.mel_fmax is not None:
|
|
assert self.mel_fmax <= self.sample_rate // 2
|
|
return librosa.filters.mel(
|
|
self.sample_rate,
|
|
self.n_fft,
|
|
n_mels=self.num_mels,
|
|
fmin=self.mel_fmin,
|
|
fmax=self.mel_fmax)
|
|
|
|
def _stft_parameters(self, ):
|
|
"""Compute necessary stft parameters with given time values"""
|
|
n_fft = (self.num_freq - 1) * 2
|
|
factor = self.frame_length_ms / self.frame_shift_ms
|
|
assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms"
|
|
hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate)
|
|
win_length = int(hop_length * factor)
|
|
return n_fft, hop_length, win_length
|
|
|
|
### DB and AMP conversion ###
|
|
def amp_to_db(self, x):
|
|
return torch.log10(torch.clamp(x, min=1e-5))
|
|
|
|
def db_to_amp(self, x):
|
|
return torch.pow(10.0, x)
|
|
|
|
### SPECTROGRAM ###
|
|
def linear_to_mel(self, spectrogram):
|
|
return torch.matmul(self.mel_basis, spectrogram)
|
|
|
|
def mel_to_linear(self, mel_spec):
|
|
return np.maximum(1e-10, np.matmul(self.inv_mel_basis, mel_spec))
|
|
|
|
def spectrogram(self, y):
|
|
''' Compute spectrograms
|
|
Args:
|
|
y (Tensor): audio signal. (B x T)
|
|
'''
|
|
M, P = self.stft.transform(y)
|
|
return self.amp_to_db(M)
|
|
|
|
def melspectrogram(self, y):
|
|
''' Compute mel-spectrograms
|
|
Args:
|
|
y (Tensor): audio signal. (B x T)
|
|
'''
|
|
M, P = self.stft.transform(y)
|
|
return self.amp_to_db(self.linear_to_mel(M))
|
|
|
|
### INV SPECTROGRAM ###
|
|
def inv_spectrogram(self, S):
|
|
"""Converts spectrogram to waveform using librosa"""
|
|
S = self.db_to_amp(S)
|
|
return self.griffin_lim(S**self.power)
|
|
|
|
def inv_melspectrogram(self, S):
|
|
'''Converts mel spectrogram to waveform using librosa'''
|
|
S = self.db_to_amp(S)
|
|
S = self.mel_to_linear(S) # Convert back to linear
|
|
return self.griffin_lim(S**self.power)
|
|
|
|
def out_linear_to_mel(self, linear_spec):
|
|
S = self._denormalize(linear_spec)
|
|
S = self._db_to_amp(S)
|
|
S = self._linear_to_mel(np.abs(S))
|
|
S = self._amp_to_db(S)
|
|
mel = self._normalize(S)
|
|
return mel
|
|
|
|
def griffin_lim(self, S):
|
|
"""
|
|
PARAMS
|
|
------
|
|
magnitudes: spectrogram magnitudes
|
|
"""
|
|
|
|
angles = np.angle(np.exp(2j * np.pi * np.random.rand(*S.size())))
|
|
angles = angles.astype(np.float32)
|
|
angles = torch.from_numpy(angles)
|
|
signal = self.stft.inverse(S, angles).squeeze(1)
|
|
|
|
for _ in range(self.griffin_lim_iters):
|
|
_, angles = self.stft.transform(signal)
|
|
signal = self.stft.inverse(S, angles).squeeze(1)
|
|
return signal
|
|
|
|
### Audio processing ###
|
|
def find_endpoint(self, wav, threshold_db=-40, min_silence_sec=0.8):
|
|
window_length = int(self.sample_rate * min_silence_sec)
|
|
hop_length = int(window_length / 4)
|
|
threshold = self._db_to_amp(threshold_db)
|
|
for x in range(hop_length, len(wav) - window_length, hop_length):
|
|
if np.max(wav[x:x + window_length]) < threshold:
|
|
return x + hop_length
|
|
return len(wav)
|
|
|
|
def trim_silence(self, wav):
|
|
""" Trim silent parts with a threshold and 0.01 sec margin """
|
|
margin = int(self.sample_rate * 0.01)
|
|
wav = wav[margin:-margin]
|
|
return librosa.effects.trim(
|
|
wav, top_db=self.trim_db, frame_length=self.win_length, hop_length=self.hop_length)[0]
|
|
|
|
def sound_norm(self, x):
|
|
return x / abs(x).max() * 0.9
|
|
|
|
### SAVE and LOAD ###
|
|
def load_wav(self, filename, sr=None):
|
|
if sr is None:
|
|
x, sr = sf.read(filename)
|
|
else:
|
|
x, sr = librosa.load(filename, sr=sr)
|
|
return x
|
|
|
|
def save_wav(self, wav, path):
|
|
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
|
|
scipy.io.wavfile.write(path, self.sample_rate, wav_norm.astype(np.int16)) |