coqui-tts/TTS/tts/utils/import torch.py

177 lines
6.1 KiB
Python

import torch
import librosa
import soundfile as sf
import numpy as np
import scipy.io
import scipy.signal
from TTS.tts.utils.stft_torch import STFT
class AudioProcessor(object):
def __init__(self,
sample_rate=None,
num_mels=None,
frame_shift_ms=None,
frame_length_ms=None,
hop_length=None,
win_length=None,
num_freq=None,
power=None,
mel_fmin=None,
mel_fmax=None,
griffin_lim_iters=None,
do_trim_silence=False,
trim_db=60,
sound_norm=False,
use_cuda=False,
**_):
print(" > Setting up Torch based Audio Processor...")
# setup class attributed
self.sample_rate = sample_rate
self.num_mels = num_mels
self.frame_shift_ms = frame_shift_ms
self.frame_length_ms = frame_length_ms
self.num_freq = num_freq
self.power = power
self.griffin_lim_iters = griffin_lim_iters
self.mel_fmin = mel_fmin or 0
self.mel_fmax = mel_fmax
self.do_trim_silence = do_trim_silence
self.trim_db = trim_db
self.sound_norm = sound_norm
# setup stft parameters
if hop_length is None:
self.n_fft, self.hop_length, self.win_length = self._stft_parameters()
else:
self.hop_length = hop_length
self.win_length = win_length
self.n_fft = (self.num_freq - 1) * 2
members = vars(self)
# print class attributes
for key, value in members.items():
print(" | > {}:{}".format(key, value))
# create spectrogram utils
self.mel_basis = torch.from_numpy(self._build_mel_basis()).float()
self.inv_mel_basis = torch.from_numpy(np.linalg.pinv(self._build_mel_basis())).float()
self.stft = STFT(filter_length=self.n_fft, hop_length=self.hop_length, win_length=self.win_length,
window='hann', padding_mode='constant', use_cuda=use_cuda)
### setting up the parameters ###
def _build_mel_basis(self):
if self.mel_fmax is not None:
assert self.mel_fmax <= self.sample_rate // 2
return librosa.filters.mel(
self.sample_rate,
self.n_fft,
n_mels=self.num_mels,
fmin=self.mel_fmin,
fmax=self.mel_fmax)
def _stft_parameters(self, ):
"""Compute necessary stft parameters with given time values"""
n_fft = (self.num_freq - 1) * 2
factor = self.frame_length_ms / self.frame_shift_ms
assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms"
hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate)
win_length = int(hop_length * factor)
return n_fft, hop_length, win_length
### DB and AMP conversion ###
def amp_to_db(self, x):
return torch.log10(torch.clamp(x, min=1e-5))
def db_to_amp(self, x):
return torch.pow(10.0, x)
### SPECTROGRAM ###
def linear_to_mel(self, spectrogram):
return torch.matmul(self.mel_basis, spectrogram)
def mel_to_linear(self, mel_spec):
return np.maximum(1e-10, np.matmul(self.inv_mel_basis, mel_spec))
def spectrogram(self, y):
''' Compute spectrograms
Args:
y (Tensor): audio signal. (B x T)
'''
M, P = self.stft.transform(y)
return self.amp_to_db(M)
def melspectrogram(self, y):
''' Compute mel-spectrograms
Args:
y (Tensor): audio signal. (B x T)
'''
M, P = self.stft.transform(y)
return self.amp_to_db(self.linear_to_mel(M))
### INV SPECTROGRAM ###
def inv_spectrogram(self, S):
"""Converts spectrogram to waveform using librosa"""
S = self.db_to_amp(S)
return self.griffin_lim(S**self.power)
def inv_melspectrogram(self, S):
'''Converts mel spectrogram to waveform using librosa'''
S = self.db_to_amp(S)
S = self.mel_to_linear(S) # Convert back to linear
return self.griffin_lim(S**self.power)
def out_linear_to_mel(self, linear_spec):
S = self._denormalize(linear_spec)
S = self._db_to_amp(S)
S = self._linear_to_mel(np.abs(S))
S = self._amp_to_db(S)
mel = self._normalize(S)
return mel
def griffin_lim(self, S):
"""
PARAMS
------
magnitudes: spectrogram magnitudes
"""
angles = np.angle(np.exp(2j * np.pi * np.random.rand(*S.size())))
angles = angles.astype(np.float32)
angles = torch.from_numpy(angles)
signal = self.stft.inverse(S, angles).squeeze(1)
for _ in range(self.griffin_lim_iters):
_, angles = self.stft.transform(signal)
signal = self.stft.inverse(S, angles).squeeze(1)
return signal
### Audio processing ###
def find_endpoint(self, wav, threshold_db=-40, min_silence_sec=0.8):
window_length = int(self.sample_rate * min_silence_sec)
hop_length = int(window_length / 4)
threshold = self._db_to_amp(threshold_db)
for x in range(hop_length, len(wav) - window_length, hop_length):
if np.max(wav[x:x + window_length]) < threshold:
return x + hop_length
return len(wav)
def trim_silence(self, wav):
""" Trim silent parts with a threshold and 0.01 sec margin """
margin = int(self.sample_rate * 0.01)
wav = wav[margin:-margin]
return librosa.effects.trim(
wav, top_db=self.trim_db, frame_length=self.win_length, hop_length=self.hop_length)[0]
def sound_norm(self, x):
return x / abs(x).max() * 0.9
### SAVE and LOAD ###
def load_wav(self, filename, sr=None):
if sr is None:
x, sr = sf.read(filename)
else:
x, sr = librosa.load(filename, sr=sr)
return x
def save_wav(self, wav, path):
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
scipy.io.wavfile.write(path, self.sample_rate, wav_norm.astype(np.int16))