mirror of https://github.com/coqui-ai/TTS.git
151 lines
5.8 KiB
Python
151 lines
5.8 KiB
Python
import os
|
|
import torchaudio
|
|
import pandas
|
|
from faster_whisper import WhisperModel
|
|
from glob import glob
|
|
|
|
from tqdm import tqdm
|
|
|
|
import torch
|
|
import torchaudio
|
|
from torchaudio.backend.sox_io_backend import load as torchaudio_sox_load
|
|
from torchaudio.backend.soundfile_backend import load as torchaudio_soundfile_load
|
|
# torch.set_num_threads(1)
|
|
|
|
from TTS.tts.layers.xtts.tokenizer import multilingual_cleaners
|
|
|
|
torch.set_num_threads(16)
|
|
|
|
|
|
import os
|
|
|
|
audio_types = (".wav", ".mp3", ".flac")
|
|
|
|
|
|
def list_audios(basePath, contains=None):
|
|
# return the set of files that are valid
|
|
return list_files(basePath, validExts=audio_types, contains=contains)
|
|
|
|
def list_files(basePath, validExts=None, contains=None):
|
|
# loop over the directory structure
|
|
for (rootDir, dirNames, filenames) in os.walk(basePath):
|
|
# loop over the filenames in the current directory
|
|
for filename in filenames:
|
|
# if the contains string is not none and the filename does not contain
|
|
# the supplied string, then ignore the file
|
|
if contains is not None and filename.find(contains) == -1:
|
|
continue
|
|
|
|
# determine the file extension of the current file
|
|
ext = filename[filename.rfind("."):].lower()
|
|
|
|
# check to see if the file is an audio and should be processed
|
|
if validExts is None or ext.endswith(validExts):
|
|
# construct the path to the audio and yield it
|
|
audioPath = os.path.join(rootDir, filename)
|
|
yield audioPath
|
|
|
|
def format_audio_list(audio_files, target_language="en", out_path=None, buffer=0.5, eval_percentage=0.15, speaker_name="coqui", gradio_progress=None):
|
|
# make sure that ooutput file exists
|
|
os.makedirs(out_path, exist_ok=True)
|
|
|
|
# Loading Whisper
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
print("Loading Whisper Model!")
|
|
asr_model = WhisperModel("large-v2", device=device, compute_type="float16")
|
|
|
|
metadata = {"audio_file": [], "text": [], "speaker_name": []}
|
|
|
|
if gradio_progress is not None:
|
|
tqdm_object = gradio_progress.tqdm(audio_files, desc="Formatting...")
|
|
else:
|
|
tqdm_object = tqdm(audio_files)
|
|
|
|
for audio_path in tqdm_object:
|
|
wav, sr = torchaudio.load(audio_path)
|
|
wav = wav.squeeze()
|
|
segments, info = asr_model.transcribe(audio_path, word_timestamps=True, language=target_language)
|
|
segments = list(segments)
|
|
i = 0
|
|
sentence = ""
|
|
sentence_start = None
|
|
first_word = True
|
|
# added all segments words in a unique list
|
|
words_list = []
|
|
for _, segment in enumerate(segments):
|
|
words = list(segment.words)
|
|
words_list.extend(words)
|
|
|
|
# process each word
|
|
for word_idx, word in enumerate(words_list):
|
|
if first_word:
|
|
sentence_start = word.start
|
|
# If it is the first sentence, add buffer or get the begining of the file
|
|
if word_idx == 0:
|
|
sentence_start = max(sentence_start - buffer, 0) # Add buffer to the sentence start
|
|
else:
|
|
# get previous sentence end
|
|
previous_word_end = words_list[word_idx - 1].end
|
|
# add buffer or get the silence midle between the previous sentence and the current one
|
|
sentence_start = max(sentence_start - buffer, (previous_word_end + sentence_start)/2)
|
|
|
|
sentence = word.word
|
|
first_word = False
|
|
else:
|
|
sentence += word.word
|
|
|
|
if word.word[-1] in ["!", ".", "?"]:
|
|
sentence = sentence[1:]
|
|
# Expand number and abbreviations plus normalization
|
|
sentence = multilingual_cleaners(sentence, target_language)
|
|
audio_file_name, ext = os.path.splitext(os.path.basename(audio_path))
|
|
|
|
audio_file = f"wavs/{audio_file_name}_{str(i).zfill(8)}{ext}"
|
|
|
|
# Check for the next word's existence
|
|
if word_idx + 1 < len(words_list):
|
|
next_word_start = words_list[word_idx + 1].start
|
|
else:
|
|
# If don't have more words it means that it is the last sentence then use the audio len as next word start
|
|
next_word_start = (wav.shape[0] - 1) / sr
|
|
|
|
# Average the current word end and next word start
|
|
word_end = min((word.end + next_word_start) / 2, word.end + buffer)
|
|
|
|
absoulte_path = os.path.join(out_path, audio_file)
|
|
os.makedirs(os.path.dirname(absoulte_path), exist_ok=True)
|
|
i += 1
|
|
first_word = True
|
|
|
|
audio = wav[int(sr*sentence_start):int(sr*word_end)].unsqueeze(0)
|
|
# if the audio is too short ignore it (i.e < 0.33 seconds)
|
|
if audio.size(-1) >= sr/3:
|
|
torchaudio.backend.sox_io_backend.save(
|
|
absoulte_path,
|
|
audio,
|
|
sr
|
|
)
|
|
else:
|
|
continue
|
|
|
|
metadata["audio_file"].append(audio_file)
|
|
metadata["text"].append(sentence)
|
|
metadata["speaker_name"].append(speaker_name)
|
|
|
|
df = pandas.DataFrame(metadata)
|
|
df = df.sample(frac=1)
|
|
num_val_samples = int(len(df)*eval_percentage)
|
|
|
|
df_eval = df[:num_val_samples]
|
|
df_train = df[num_val_samples:]
|
|
|
|
df_train = df_train.sort_values('audio_file')
|
|
train_metadata_path = os.path.join(out_path, "metadata_train.csv")
|
|
df_train.to_csv(train_metadata_path, sep="|", index=False)
|
|
|
|
eval_metadata_path = os.path.join(out_path, "metadata_eval.csv")
|
|
df_eval = df_eval.sort_values('audio_file')
|
|
df_eval.to_csv(eval_metadata_path, sep="|", index=False)
|
|
|
|
return train_metadata_path, eval_metadata_path |