coqui-tts/TTS/bin/train_align_tts.py

622 lines
26 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import sys
import time
import traceback
from random import randrange
import numpy as np
import torch
from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.layers.losses import AlignTTSLoss
from TTS.tts.utils.generic_utils import setup_model
from TTS.tts.utils.io import save_best_model, save_checkpoint
from TTS.tts.utils.measures import alignment_diagonal_score
from TTS.tts.utils.speakers import parse_speakers
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.arguments import parse_arguments, process_args
from TTS.utils.audio import AudioProcessor
from TTS.utils.distribute import init_distributed, reduce_tensor
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
remove_experiment_folder, set_init_dict)
from TTS.utils.radam import RAdam
from TTS.utils.training import NoamLR, setup_torch_training_env
if __name__ == '__main__':
use_cuda, num_gpus = setup_torch_training_env(True, False)
# torch.autograd.set_detect_anomaly(True)
def setup_loader(ap, r, is_val=False, verbose=False):
if is_val and not c.run_eval:
loader = None
else:
dataset = MyDataset(
r,
c.text_cleaner,
compute_linear_spec=False,
meta_data=meta_data_eval if is_val else meta_data_train,
ap=ap,
tp=c.characters if 'characters' in c.keys() else None,
add_blank=c['add_blank'] if 'add_blank' in c.keys() else False,
batch_group_size=0 if is_val else c.batch_group_size *
c.batch_size,
min_seq_len=c.min_seq_len,
max_seq_len=c.max_seq_len,
phoneme_cache_path=c.phoneme_cache_path,
use_phonemes=c.use_phonemes,
phoneme_language=c.phoneme_language,
enable_eos_bos=c.enable_eos_bos_chars,
use_noise_augment=not is_val,
verbose=verbose,
speaker_mapping=speaker_mapping if c.use_speaker_embedding
and c.use_external_speaker_embedding_file else None)
if c.use_phonemes and c.compute_input_seq_cache:
# precompute phonemes to have a better estimate of sequence lengths.
dataset.compute_input_seq(c.num_loader_workers)
dataset.sort_items()
sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(
dataset,
batch_size=c.eval_batch_size if is_val else c.batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
drop_last=False,
sampler=sampler,
num_workers=c.num_val_loader_workers
if is_val else c.num_loader_workers,
pin_memory=False)
return loader
def format_data(data):
# setup input data
text_input = data[0]
text_lengths = data[1]
speaker_names = data[2]
mel_input = data[4].permute(0, 2, 1) # B x D x T
mel_lengths = data[5]
item_idx = data[7]
avg_text_length = torch.mean(text_lengths.float())
avg_spec_length = torch.mean(mel_lengths.float())
if c.use_speaker_embedding:
if c.use_external_speaker_embedding_file:
# return precomputed embedding vector
speaker_c = data[8]
else:
# return speaker_id to be used by an embedding layer
speaker_c = [
speaker_mapping[speaker_name]
for speaker_name in speaker_names
]
speaker_c = torch.LongTensor(speaker_c)
else:
speaker_c = None
# dispatch data to GPU
if use_cuda:
text_input = text_input.cuda(non_blocking=True)
text_lengths = text_lengths.cuda(non_blocking=True)
mel_input = mel_input.cuda(non_blocking=True)
mel_lengths = mel_lengths.cuda(non_blocking=True)
if speaker_c is not None:
speaker_c = speaker_c.cuda(non_blocking=True)
return text_input, text_lengths, mel_input, mel_lengths, speaker_c,\
avg_text_length, avg_spec_length, item_idx
def train(data_loader, model, criterion, optimizer, scheduler, ap,
global_step, epoch, training_phase):
model.train()
epoch_time = 0
keep_avg = KeepAverage()
if use_cuda:
batch_n_iter = int(
len(data_loader.dataset) / (c.batch_size * num_gpus))
else:
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
end_time = time.time()
c_logger.print_train_start()
scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# format data
text_input, text_lengths, mel_targets, mel_lengths, speaker_c,\
avg_text_length, avg_spec_length, _ = format_data(data)
loader_time = time.time() - end_time
global_step += 1
optimizer.zero_grad()
# forward pass model
with torch.cuda.amp.autocast(enabled=c.mixed_precision):
decoder_output, dur_output, dur_mas_output, alignments, mu, log_sigma, logp = model.forward(
text_input,
text_lengths,
mel_targets,
mel_lengths,
g=speaker_c,
phase=training_phase)
# compute loss
loss_dict = criterion(mu,
log_sigma,
logp,
decoder_output,
mel_targets,
mel_lengths,
dur_output,
dur_mas_output,
text_lengths,
global_step,
phase=training_phase)
# backward pass with loss scaling
if c.mixed_precision:
scaler.scale(loss_dict['loss']).backward()
scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), c.grad_clip)
scaler.step(optimizer)
scaler.update()
else:
loss_dict['loss'].backward()
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), c.grad_clip)
optimizer.step()
# setup lr
if c.noam_schedule:
scheduler.step()
# current_lr
current_lr = optimizer.param_groups[0]['lr']
# compute alignment error (the lower the better )
align_error = 1 - alignment_diagonal_score(alignments, binary=True)
loss_dict['align_error'] = align_error
step_time = time.time() - start_time
epoch_time += step_time
# aggregate losses from processes
if num_gpus > 1:
loss_dict['loss_l1'] = reduce_tensor(loss_dict['loss_l1'].data,
num_gpus)
loss_dict['loss_ssim'] = reduce_tensor(
loss_dict['loss_ssim'].data, num_gpus)
loss_dict['loss_dur'] = reduce_tensor(
loss_dict['loss_dur'].data, num_gpus)
loss_dict['loss'] = reduce_tensor(loss_dict['loss'].data,
num_gpus)
# detach loss values
loss_dict_new = dict()
for key, value in loss_dict.items():
if isinstance(value, (int, float)):
loss_dict_new[key] = value
else:
loss_dict_new[key] = value.item()
loss_dict = loss_dict_new
# update avg stats
update_train_values = dict()
for key, value in loss_dict.items():
update_train_values['avg_' + key] = value
update_train_values['avg_loader_time'] = loader_time
update_train_values['avg_step_time'] = step_time
keep_avg.update_values(update_train_values)
# print training progress
if global_step % c.print_step == 0:
log_dict = {
"avg_spec_length": [avg_spec_length,
1], # value, precision
"avg_text_length": [avg_text_length, 1],
"step_time": [step_time, 4],
"loader_time": [loader_time, 2],
"current_lr": current_lr,
}
c_logger.print_train_step(batch_n_iter, num_iter, global_step,
log_dict, loss_dict,
keep_avg.avg_values)
if args.rank == 0:
# Plot Training Iter Stats
# reduce TB load
if global_step % c.tb_plot_step == 0:
iter_stats = {
"lr": current_lr,
"grad_norm": grad_norm,
"step_time": step_time
}
iter_stats.update(loss_dict)
tb_logger.tb_train_iter_stats(global_step, iter_stats)
if global_step % c.save_step == 0:
if c.checkpoint:
# save model
save_checkpoint(model,
optimizer,
global_step,
epoch,
1,
OUT_PATH,
model_characters,
model_loss=loss_dict['loss'])
# wait all kernels to be completed
torch.cuda.synchronize()
# Diagnostic visualizations
if decoder_output is not None:
idx = np.random.randint(mel_targets.shape[0])
pred_spec = decoder_output[idx].detach().data.cpu(
).numpy().T
gt_spec = mel_targets[idx].data.cpu().numpy().T
align_img = alignments[idx].data.cpu()
figures = {
"prediction": plot_spectrogram(pred_spec, ap),
"ground_truth": plot_spectrogram(gt_spec, ap),
"alignment": plot_alignment(align_img),
}
tb_logger.tb_train_figures(global_step, figures)
# Sample audio
train_audio = ap.inv_melspectrogram(pred_spec.T)
tb_logger.tb_train_audios(global_step,
{'TrainAudio': train_audio},
c.audio["sample_rate"])
end_time = time.time()
# print epoch stats
c_logger.print_train_epoch_end(global_step, epoch, epoch_time,
keep_avg)
# Plot Epoch Stats
if args.rank == 0:
epoch_stats = {"epoch_time": epoch_time}
epoch_stats.update(keep_avg.avg_values)
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
if c.tb_model_param_stats:
tb_logger.tb_model_weights(model, global_step)
return keep_avg.avg_values, global_step
@torch.no_grad()
def evaluate(data_loader, model, criterion, ap, global_step, epoch,
training_phase):
model.eval()
epoch_time = 0
keep_avg = KeepAverage()
c_logger.print_eval_start()
if data_loader is not None:
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# format data
text_input, text_lengths, mel_targets, mel_lengths, speaker_c,\
_, _, _ = format_data(data)
# forward pass model
with torch.cuda.amp.autocast(enabled=c.mixed_precision):
decoder_output, dur_output, dur_mas_output, alignments, mu, log_sigma, logp_max_path = model.forward(
text_input,
text_lengths,
mel_targets,
mel_lengths,
g=speaker_c)
# compute loss
loss_dict = criterion(mu, log_sigma, logp_max_path,
decoder_output, mel_targets,
mel_lengths, dur_output,
dur_mas_output, text_lengths,
global_step, training_phase)
# step time
step_time = time.time() - start_time
epoch_time += step_time
# compute alignment score
align_error = 1 - alignment_diagonal_score(alignments,
binary=True)
loss_dict['align_error'] = align_error
# aggregate losses from processes
if num_gpus > 1:
loss_dict['loss_l1'] = reduce_tensor(
loss_dict['loss_l1'].data, num_gpus)
loss_dict['loss_ssim'] = reduce_tensor(
loss_dict['loss_ssim'].data, num_gpus)
loss_dict['loss_dur'] = reduce_tensor(
loss_dict['loss_dur'].data, num_gpus)
loss_dict['loss'] = reduce_tensor(loss_dict['loss'].data,
num_gpus)
# detach loss values
loss_dict_new = dict()
for key, value in loss_dict.items():
if isinstance(value, (int, float)):
loss_dict_new[key] = value
else:
loss_dict_new[key] = value.item()
loss_dict = loss_dict_new
# update avg stats
update_train_values = dict()
for key, value in loss_dict.items():
update_train_values['avg_' + key] = value
keep_avg.update_values(update_train_values)
if c.print_eval:
c_logger.print_eval_step(num_iter, loss_dict,
keep_avg.avg_values)
if args.rank == 0:
# Diagnostic visualizations
idx = np.random.randint(mel_targets.shape[0])
pred_spec = decoder_output[idx].detach().data.cpu().numpy().T
gt_spec = mel_targets[idx].data.cpu().numpy().T
align_img = alignments[idx].data.cpu()
eval_figures = {
"prediction": plot_spectrogram(pred_spec,
ap,
output_fig=False),
"ground_truth": plot_spectrogram(gt_spec,
ap,
output_fig=False),
"alignment": plot_alignment(align_img, output_fig=False)
}
# Sample audio
eval_audio = ap.inv_melspectrogram(pred_spec.T)
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio},
c.audio["sample_rate"])
# Plot Validation Stats
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
tb_logger.tb_eval_figures(global_step, eval_figures)
if args.rank == 0 and epoch >= c.test_delay_epochs:
if c.test_sentences_file is None:
test_sentences = [
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
"Be a voice, not an echo.",
"I'm sorry Dave. I'm afraid I can't do that.",
"This cake is great. It's so delicious and moist.",
"Prior to November 22, 1963."
]
else:
with open(c.test_sentences_file, "r") as f:
test_sentences = [s.strip() for s in f.readlines()]
# test sentences
test_audios = {}
test_figures = {}
print(" | > Synthesizing test sentences")
if c.use_speaker_embedding:
if c.use_external_speaker_embedding_file:
speaker_embedding = speaker_mapping[list(
speaker_mapping.keys())[randrange(
len(speaker_mapping) - 1)]]['embedding']
speaker_id = None
else:
speaker_id = 0
speaker_embedding = None
else:
speaker_id = None
speaker_embedding = None
style_wav = c.get("style_wav_for_test")
for idx, test_sentence in enumerate(test_sentences):
try:
wav, alignment, _, postnet_output, _, _ = synthesis(
model,
test_sentence,
c,
use_cuda,
ap,
speaker_id=speaker_id,
speaker_embedding=speaker_embedding,
style_wav=style_wav,
truncated=False,
enable_eos_bos_chars=c.enable_eos_bos_chars, #pylint: disable=unused-argument
use_griffin_lim=True,
do_trim_silence=False)
file_path = os.path.join(AUDIO_PATH, str(global_step))
os.makedirs(file_path, exist_ok=True)
file_path = os.path.join(file_path,
"TestSentence_{}.wav".format(idx))
ap.save_wav(wav, file_path)
test_audios['{}-audio'.format(idx)] = wav
test_figures['{}-prediction'.format(
idx)] = plot_spectrogram(postnet_output, ap)
test_figures['{}-alignment'.format(idx)] = plot_alignment(
alignment)
except: #pylint: disable=bare-except
print(" !! Error creating Test Sentence -", idx)
traceback.print_exc()
tb_logger.tb_test_audios(global_step, test_audios,
c.audio['sample_rate'])
tb_logger.tb_test_figures(global_step, test_figures)
return keep_avg.avg_values
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data_train, meta_data_eval, symbols, phonemes, model_characters, speaker_mapping
# Audio processor
ap = AudioProcessor(**c.audio)
if 'characters' in c.keys():
symbols, phonemes = make_symbols(**c.characters)
# DISTRUBUTED
if num_gpus > 1:
init_distributed(args.rank, num_gpus, args.group_id,
c.distributed["backend"], c.distributed["url"])
# set model characters
model_characters = phonemes if c.use_phonemes else symbols
num_chars = len(model_characters)
# load data instances
meta_data_train, meta_data_eval = load_meta_data(c.datasets,
eval_split=True)
# set the portion of the data used for training if set in config.json
if 'train_portion' in c.keys():
meta_data_train = meta_data_train[:int(
len(meta_data_train) * c.train_portion)]
if 'eval_portion' in c.keys():
meta_data_eval = meta_data_eval[:int(
len(meta_data_eval) * c.eval_portion)]
# parse speakers
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(
c, args, meta_data_train, OUT_PATH)
# setup model
model = setup_model(num_chars,
num_speakers,
c,
speaker_embedding_dim=speaker_embedding_dim)
optimizer = RAdam(model.parameters(),
lr=c.lr,
weight_decay=0,
betas=(0.9, 0.98),
eps=1e-9)
criterion = AlignTTSLoss(c)
if args.restore_path:
print(
f" > Restoring from {os.path.basename(args.restore_path)} ...")
checkpoint = torch.load(args.restore_path, map_location='cpu')
try:
# TODO: fix optimizer init, model.cuda() needs to be called before
# optimizer restore
optimizer.load_state_dict(checkpoint['optimizer'])
if c.reinit_layers:
raise RuntimeError
model.load_state_dict(checkpoint['model'])
except: #pylint: disable=bare-except
print(" > Partial model initialization.")
model_dict = model.state_dict()
model_dict = set_init_dict(model_dict, checkpoint['model'], c)
model.load_state_dict(model_dict)
del model_dict
for group in optimizer.param_groups:
group['initial_lr'] = c.lr
print(" > Model restored from step %d" % checkpoint['step'],
flush=True)
args.restore_step = checkpoint['step']
else:
args.restore_step = 0
if use_cuda:
model.cuda()
criterion.cuda()
# DISTRUBUTED
if num_gpus > 1:
model = DDP_th(model, device_ids=[args.rank])
if c.noam_schedule:
scheduler = NoamLR(optimizer,
warmup_steps=c.warmup_steps,
last_epoch=args.restore_step - 1)
else:
scheduler = None
num_params = count_parameters(model)
print("\n > Model has {} parameters".format(num_params), flush=True)
if args.restore_step == 0 or not args.best_path:
best_loss = float('inf')
print(" > Starting with inf best loss.")
else:
print(" > Restoring best loss from "
f"{os.path.basename(args.best_path)} ...")
best_loss = torch.load(args.best_path,
map_location='cpu')['model_loss']
print(f" > Starting with loaded last best loss {best_loss}.")
keep_all_best = c.get('keep_all_best', False)
keep_after = c.get('keep_after', 10000) # void if keep_all_best False
# define dataloaders
train_loader = setup_loader(ap, 1, is_val=False, verbose=True)
eval_loader = setup_loader(ap, 1, is_val=True, verbose=True)
global_step = args.restore_step
def set_phase():
"""Set AlignTTS training phase"""
if isinstance(c.phase_start_steps, list):
vals = [i < global_step for i in c.phase_start_steps]
if not True in vals:
phase = 0
else:
phase = len(c.phase_start_steps) - [
i < global_step for i in c.phase_start_steps
][::-1].index(True) - 1
else:
phase = None
return phase
for epoch in range(0, c.epochs):
cur_phase = set_phase()
print(f"\n > Current AlignTTS phase: {cur_phase}")
c_logger.print_epoch_start(epoch, c.epochs)
train_avg_loss_dict, global_step = train(train_loader, model,
criterion, optimizer,
scheduler, ap,
global_step, epoch,
cur_phase)
eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap,
global_step, epoch, cur_phase)
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
target_loss = train_avg_loss_dict['avg_loss']
if c.run_eval:
target_loss = eval_avg_loss_dict['avg_loss']
best_loss = save_best_model(target_loss,
best_loss,
model,
optimizer,
global_step,
epoch,
1,
OUT_PATH,
model_characters,
keep_all_best=keep_all_best,
keep_after=keep_after)
args = parse_arguments(sys.argv)
c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = process_args(
args, model_class='tts')
try:
main(args)
except KeyboardInterrupt:
remove_experiment_folder(OUT_PATH)
try:
sys.exit(0)
except SystemExit:
os._exit(0) # pylint: disable=protected-access
except Exception: # pylint: disable=broad-except
remove_experiment_folder(OUT_PATH)
traceback.print_exc()
sys.exit(1)