coqui-tts/TTS/bin/train_encoder.py

225 lines
7.5 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import sys
import time
import traceback
import torch
from torch.utils.data import DataLoader
from TTS.speaker_encoder.dataset import SpeakerEncoderDataset
from TTS.speaker_encoder.losses import AngleProtoLoss, GE2ELoss, SoftmaxAngleProtoLoss
from TTS.speaker_encoder.utils.generic_utils import save_best_model, setup_model
from TTS.speaker_encoder.utils.training import init_training
from TTS.speaker_encoder.utils.visual import plot_embeddings
from TTS.tts.datasets import load_tts_samples
from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import count_parameters, remove_experiment_folder, set_init_dict
from TTS.utils.io import load_fsspec
from TTS.utils.radam import RAdam
from TTS.utils.training import NoamLR, check_update
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.manual_seed(54321)
use_cuda = torch.cuda.is_available()
num_gpus = torch.cuda.device_count()
print(" > Using CUDA: ", use_cuda)
print(" > Number of GPUs: ", num_gpus)
def setup_loader(ap: AudioProcessor, is_val: bool = False, verbose: bool = False):
if is_val:
loader = None
else:
dataset = SpeakerEncoderDataset(
ap,
meta_data_eval if is_val else meta_data_train,
voice_len=c.voice_len,
num_utter_per_speaker=c.num_utters_per_speaker,
num_speakers_in_batch=c.num_speakers_in_batch,
skip_speakers=c.skip_speakers,
storage_size=c.storage["storage_size"],
sample_from_storage_p=c.storage["sample_from_storage_p"],
verbose=verbose,
augmentation_config=c.audio_augmentation,
)
# sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(
dataset,
batch_size=c.num_speakers_in_batch,
shuffle=False,
num_workers=c.num_loader_workers,
collate_fn=dataset.collate_fn,
)
return loader, dataset.get_num_speakers()
def train(model, optimizer, scheduler, criterion, data_loader, global_step):
model.train()
epoch_time = 0
best_loss = float("inf")
avg_loss = 0
avg_loss_all = 0
avg_loader_time = 0
end_time = time.time()
for _, data in enumerate(data_loader):
start_time = time.time()
# setup input data
inputs, labels = data
loader_time = time.time() - end_time
global_step += 1
# setup lr
if c.lr_decay:
scheduler.step()
optimizer.zero_grad()
# dispatch data to GPU
if use_cuda:
inputs = inputs.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
# forward pass model
outputs = model(inputs)
# loss computation
loss = criterion(outputs.view(c.num_speakers_in_batch, outputs.shape[0] // c.num_speakers_in_batch, -1), labels)
loss.backward()
grad_norm, _ = check_update(model, c.grad_clip)
optimizer.step()
step_time = time.time() - start_time
epoch_time += step_time
# Averaged Loss and Averaged Loader Time
avg_loss = 0.01 * loss.item() + 0.99 * avg_loss if avg_loss != 0 else loss.item()
num_loader_workers = c.num_loader_workers if c.num_loader_workers > 0 else 1
avg_loader_time = (
1 / num_loader_workers * loader_time + (num_loader_workers - 1) / num_loader_workers * avg_loader_time
if avg_loader_time != 0
else loader_time
)
current_lr = optimizer.param_groups[0]["lr"]
if global_step % c.steps_plot_stats == 0:
# Plot Training Epoch Stats
train_stats = {
"loss": avg_loss,
"lr": current_lr,
"grad_norm": grad_norm,
"step_time": step_time,
"avg_loader_time": avg_loader_time,
}
dashboard_logger.train_epoch_stats(global_step, train_stats)
figures = {
# FIXME: not constant
"UMAP Plot": plot_embeddings(outputs.detach().cpu().numpy(), 10),
}
dashboard_logger.train_figures(global_step, figures)
if global_step % c.print_step == 0:
print(
" | > Step:{} Loss:{:.5f} AvgLoss:{:.5f} GradNorm:{:.5f} "
"StepTime:{:.2f} LoaderTime:{:.2f} AvGLoaderTime:{:.2f} LR:{:.6f}".format(
global_step, loss.item(), avg_loss, grad_norm, step_time, loader_time, avg_loader_time, current_lr
),
flush=True,
)
avg_loss_all += avg_loss
if global_step >= c.max_train_step or global_step % c.save_step == 0:
# save best model only
best_loss = save_best_model(model, optimizer, criterion, avg_loss, best_loss, OUT_PATH, global_step)
avg_loss_all = 0
if global_step >= c.max_train_step:
break
end_time = time.time()
return avg_loss, global_step
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data_train
global meta_data_eval
ap = AudioProcessor(**c.audio)
model = setup_model(c)
optimizer = RAdam(model.parameters(), lr=c.lr)
# pylint: disable=redefined-outer-name
meta_data_train, meta_data_eval = load_tts_samples(c.datasets, eval_split=False)
data_loader, num_speakers = setup_loader(ap, is_val=False, verbose=True)
if c.loss == "ge2e":
criterion = GE2ELoss(loss_method="softmax")
elif c.loss == "angleproto":
criterion = AngleProtoLoss()
elif c.loss == "softmaxproto":
criterion = SoftmaxAngleProtoLoss(c.model_params["proj_dim"], num_speakers)
else:
raise Exception("The %s not is a loss supported" % c.loss)
if args.restore_path:
checkpoint = load_fsspec(args.restore_path)
try:
model.load_state_dict(checkpoint["model"])
if "criterion" in checkpoint:
criterion.load_state_dict(checkpoint["criterion"])
except (KeyError, RuntimeError):
print(" > Partial model initialization.")
model_dict = model.state_dict()
model_dict = set_init_dict(model_dict, checkpoint["model"], c)
model.load_state_dict(model_dict)
del model_dict
for group in optimizer.param_groups:
group["lr"] = c.lr
print(" > Model restored from step %d" % checkpoint["step"], flush=True)
args.restore_step = checkpoint["step"]
else:
args.restore_step = 0
if c.lr_decay:
scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1)
else:
scheduler = None
num_params = count_parameters(model)
print("\n > Model has {} parameters".format(num_params), flush=True)
if use_cuda:
model = model.cuda()
criterion.cuda()
global_step = args.restore_step
_, global_step = train(model, optimizer, scheduler, criterion, data_loader, global_step)
if __name__ == "__main__":
args, c, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger = init_training()
try:
main(args)
except KeyboardInterrupt:
remove_experiment_folder(OUT_PATH)
try:
sys.exit(0)
except SystemExit:
os._exit(0) # pylint: disable=protected-access
except Exception: # pylint: disable=broad-except
remove_experiment_folder(OUT_PATH)
traceback.print_exc()
sys.exit(1)