coqui-tts/TTS/vocoder/models/wavernn.py

495 lines
17 KiB
Python

import sys
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
import time
# fix this
from TTS.utils.audio import AudioProcessor as ap
from TTS.vocoder.utils.distribution import (
sample_from_gaussian,
sample_from_discretized_mix_logistic,
)
def stream(string, variables):
sys.stdout.write(f"\r{string}" % variables)
class ResBlock(nn.Module):
def __init__(self, dims):
super().__init__()
self.conv1 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
self.conv2 = nn.Conv1d(dims, dims, kernel_size=1, bias=False)
self.batch_norm1 = nn.BatchNorm1d(dims)
self.batch_norm2 = nn.BatchNorm1d(dims)
def forward(self, x):
residual = x
x = self.conv1(x)
x = self.batch_norm1(x)
x = F.relu(x)
x = self.conv2(x)
x = self.batch_norm2(x)
return x + residual
class MelResNet(nn.Module):
def __init__(self, res_blocks, in_dims, compute_dims, res_out_dims, pad):
super().__init__()
k_size = pad * 2 + 1
self.conv_in = nn.Conv1d(
in_dims, compute_dims, kernel_size=k_size, bias=False)
self.batch_norm = nn.BatchNorm1d(compute_dims)
self.layers = nn.ModuleList()
for _ in range(res_blocks):
self.layers.append(ResBlock(compute_dims))
self.conv_out = nn.Conv1d(compute_dims, res_out_dims, kernel_size=1)
def forward(self, x):
x = self.conv_in(x)
x = self.batch_norm(x)
x = F.relu(x)
for f in self.layers:
x = f(x)
x = self.conv_out(x)
return x
class Stretch2d(nn.Module):
def __init__(self, x_scale, y_scale):
super().__init__()
self.x_scale = x_scale
self.y_scale = y_scale
def forward(self, x):
b, c, h, w = x.size()
x = x.unsqueeze(-1).unsqueeze(3)
x = x.repeat(1, 1, 1, self.y_scale, 1, self.x_scale)
return x.view(b, c, h * self.y_scale, w * self.x_scale)
class UpsampleNetwork(nn.Module):
def __init__(
self,
feat_dims,
upsample_scales,
compute_dims,
res_blocks,
res_out_dims,
pad,
use_aux_net,
):
super().__init__()
self.total_scale = np.cumproduct(upsample_scales)[-1]
self.indent = pad * self.total_scale
self.use_aux_net = use_aux_net
if use_aux_net:
self.resnet = MelResNet(
res_blocks, feat_dims, compute_dims, res_out_dims, pad
)
self.resnet_stretch = Stretch2d(self.total_scale, 1)
self.up_layers = nn.ModuleList()
for scale in upsample_scales:
k_size = (1, scale * 2 + 1)
padding = (0, scale)
stretch = Stretch2d(scale, 1)
conv = nn.Conv2d(1, 1, kernel_size=k_size,
padding=padding, bias=False)
conv.weight.data.fill_(1.0 / k_size[1])
self.up_layers.append(stretch)
self.up_layers.append(conv)
def forward(self, m):
if self.use_aux_net:
aux = self.resnet(m).unsqueeze(1)
aux = self.resnet_stretch(aux)
aux = aux.squeeze(1)
aux = aux.transpose(1, 2)
else:
aux = None
m = m.unsqueeze(1)
for f in self.up_layers:
m = f(m)
m = m.squeeze(1)[:, :, self.indent: -self.indent]
return m.transpose(1, 2), aux
class Upsample(nn.Module):
def __init__(
self, scale, pad, res_blocks, feat_dims, compute_dims, res_out_dims, use_aux_net
):
super().__init__()
self.scale = scale
self.pad = pad
self.indent = pad * scale
self.use_aux_net = use_aux_net
self.resnet = MelResNet(res_blocks, feat_dims,
compute_dims, res_out_dims, pad)
def forward(self, m):
if self.use_aux_net:
aux = self.resnet(m)
aux = torch.nn.functional.interpolate(
aux, scale_factor=self.scale, mode="linear", align_corners=True
)
aux = aux.transpose(1, 2)
else:
aux = None
m = torch.nn.functional.interpolate(
m, scale_factor=self.scale, mode="linear", align_corners=True
)
m = m[:, :, self.indent: -self.indent]
m = m * 0.045 # empirically found
return m.transpose(1, 2), aux
class WaveRNN(nn.Module):
def __init__(
self,
rnn_dims,
fc_dims,
mode,
mulaw,
pad,
use_aux_net,
use_upsample_net,
upsample_factors,
feat_dims,
compute_dims,
res_out_dims,
res_blocks,
hop_length,
sample_rate,
):
super().__init__()
self.mode = mode
self.mulaw = mulaw
self.pad = pad
self.use_upsample_net = use_upsample_net
self.use_aux_net = use_aux_net
if isinstance(self.mode, int):
self.n_classes = 2 ** self.mode
elif self.mode == "mold":
self.n_classes = 3 * 10
elif self.mode == "gauss":
self.n_classes = 2
else:
raise RuntimeError(" > Unknown training mode")
self.rnn_dims = rnn_dims
self.aux_dims = res_out_dims // 4
self.hop_length = hop_length
self.sample_rate = sample_rate
if self.use_upsample_net:
assert (
np.cumproduct(upsample_factors)[-1] == self.hop_length
), " [!] upsample scales needs to be equal to hop_length"
self.upsample = UpsampleNetwork(
feat_dims,
upsample_factors,
compute_dims,
res_blocks,
res_out_dims,
pad,
use_aux_net,
)
else:
self.upsample = Upsample(
hop_length,
pad,
res_blocks,
feat_dims,
compute_dims,
res_out_dims,
use_aux_net,
)
if self.use_aux_net:
self.I = nn.Linear(feat_dims + self.aux_dims + 1, rnn_dims)
self.rnn1 = nn.GRU(rnn_dims, rnn_dims, batch_first=True)
self.rnn2 = nn.GRU(rnn_dims + self.aux_dims,
rnn_dims, batch_first=True)
self.fc1 = nn.Linear(rnn_dims + self.aux_dims, fc_dims)
self.fc2 = nn.Linear(fc_dims + self.aux_dims, fc_dims)
self.fc3 = nn.Linear(fc_dims, self.n_classes)
else:
self.I = nn.Linear(feat_dims + 1, rnn_dims)
self.rnn1 = nn.GRU(rnn_dims, rnn_dims, batch_first=True)
self.rnn2 = nn.GRU(rnn_dims, rnn_dims, batch_first=True)
self.fc1 = nn.Linear(rnn_dims, fc_dims)
self.fc2 = nn.Linear(fc_dims, fc_dims)
self.fc3 = nn.Linear(fc_dims, self.n_classes)
def forward(self, x, mels):
bsize = x.size(0)
h1 = torch.zeros(1, bsize, self.rnn_dims).to(x.device)
h2 = torch.zeros(1, bsize, self.rnn_dims).to(x.device)
mels, aux = self.upsample(mels)
if self.use_aux_net:
aux_idx = [self.aux_dims * i for i in range(5)]
a1 = aux[:, :, aux_idx[0]: aux_idx[1]]
a2 = aux[:, :, aux_idx[1]: aux_idx[2]]
a3 = aux[:, :, aux_idx[2]: aux_idx[3]]
a4 = aux[:, :, aux_idx[3]: aux_idx[4]]
x = (
torch.cat([x.unsqueeze(-1), mels, a1], dim=2)
if self.use_aux_net
else torch.cat([x.unsqueeze(-1), mels], dim=2)
)
x = self.I(x)
res = x
self.rnn1.flatten_parameters()
x, _ = self.rnn1(x, h1)
x = x + res
res = x
x = torch.cat([x, a2], dim=2) if self.use_aux_net else x
self.rnn2.flatten_parameters()
x, _ = self.rnn2(x, h2)
x = x + res
x = torch.cat([x, a3], dim=2) if self.use_aux_net else x
x = F.relu(self.fc1(x))
x = torch.cat([x, a4], dim=2) if self.use_aux_net else x
x = F.relu(self.fc2(x))
return self.fc3(x)
def generate(self, mels, batched, target, overlap, use_cuda):
self.eval()
device = 'cuda' if use_cuda else 'cpu'
output = []
start = time.time()
rnn1 = self.get_gru_cell(self.rnn1)
rnn2 = self.get_gru_cell(self.rnn2)
with torch.no_grad():
mels = torch.FloatTensor(mels).unsqueeze(0).to(device)
#mels = torch.FloatTensor(mels).cuda().unsqueeze(0)
wave_len = (mels.size(-1) - 1) * self.hop_length
mels = self.pad_tensor(mels.transpose(
1, 2), pad=self.pad, side="both")
mels, aux = self.upsample(mels.transpose(1, 2))
if batched:
mels = self.fold_with_overlap(mels, target, overlap)
if aux is not None:
aux = self.fold_with_overlap(aux, target, overlap)
b_size, seq_len, _ = mels.size()
h1 = torch.zeros(b_size, self.rnn_dims).to(device)
h2 = torch.zeros(b_size, self.rnn_dims).to(device)
x = torch.zeros(b_size, 1).to(device)
if self.use_aux_net:
d = self.aux_dims
aux_split = [aux[:, :, d * i: d * (i + 1)] for i in range(4)]
for i in range(seq_len):
m_t = mels[:, i, :]
if self.use_aux_net:
a1_t, a2_t, a3_t, a4_t = (a[:, i, :] for a in aux_split)
x = (
torch.cat([x, m_t, a1_t], dim=1)
if self.use_aux_net
else torch.cat([x, m_t], dim=1)
)
x = self.I(x)
h1 = rnn1(x, h1)
x = x + h1
inp = torch.cat([x, a2_t], dim=1) if self.use_aux_net else x
h2 = rnn2(inp, h2)
x = x + h2
x = torch.cat([x, a3_t], dim=1) if self.use_aux_net else x
x = F.relu(self.fc1(x))
x = torch.cat([x, a4_t], dim=1) if self.use_aux_net else x
x = F.relu(self.fc2(x))
logits = self.fc3(x)
if self.mode == "mold":
sample = sample_from_discretized_mix_logistic(
logits.unsqueeze(0).transpose(1, 2)
)
output.append(sample.view(-1))
x = sample.transpose(0, 1).to(device)
elif self.mode == "gauss":
sample = sample_from_gaussian(
logits.unsqueeze(0).transpose(1, 2))
output.append(sample.view(-1))
x = sample.transpose(0, 1).to(device)
elif isinstance(self.mode, int):
posterior = F.softmax(logits, dim=1)
distrib = torch.distributions.Categorical(posterior)
sample = 2 * distrib.sample().float() / (self.n_classes - 1.0) - 1.0
output.append(sample)
x = sample.unsqueeze(-1)
else:
raise RuntimeError(
"Unknown model mode value - ", self.mode)
if i % 100 == 0:
self.gen_display(i, seq_len, b_size, start)
output = torch.stack(output).transpose(0, 1)
output = output.cpu().numpy()
output = output.astype(np.float64)
if batched:
output = self.xfade_and_unfold(output, target, overlap)
else:
output = output[0]
if self.mulaw and isinstance(self.mode, int):
output = ap.mulaw_decode(output, self.mode)
# Fade-out at the end to avoid signal cutting out suddenly
fade_out = np.linspace(1, 0, 20 * self.hop_length)
output = output[:wave_len]
output[-20 * self.hop_length:] *= fade_out
self.train()
return output
def gen_display(self, i, seq_len, b_size, start):
gen_rate = (i + 1) / (time.time() - start) * b_size / 1000
realtime_ratio = gen_rate * 1000 / self.sample_rate
stream(
"%i/%i -- batch_size: %i -- gen_rate: %.1f kHz -- x_realtime: %.1f ",
(i * b_size, seq_len * b_size, b_size, gen_rate, realtime_ratio),
)
def fold_with_overlap(self, x, target, overlap):
"""Fold the tensor with overlap for quick batched inference.
Overlap will be used for crossfading in xfade_and_unfold()
Args:
x (tensor) : Upsampled conditioning features.
shape=(1, timesteps, features)
target (int) : Target timesteps for each index of batch
overlap (int) : Timesteps for both xfade and rnn warmup
Return:
(tensor) : shape=(num_folds, target + 2 * overlap, features)
Details:
x = [[h1, h2, ... hn]]
Where each h is a vector of conditioning features
Eg: target=2, overlap=1 with x.size(1)=10
folded = [[h1, h2, h3, h4],
[h4, h5, h6, h7],
[h7, h8, h9, h10]]
"""
_, total_len, features = x.size()
# Calculate variables needed
num_folds = (total_len - overlap) // (target + overlap)
extended_len = num_folds * (overlap + target) + overlap
remaining = total_len - extended_len
# Pad if some time steps poking out
if remaining != 0:
num_folds += 1
padding = target + 2 * overlap - remaining
x = self.pad_tensor(x, padding, side="after")
folded = torch.zeros(num_folds, target + 2 * overlap, features).to(x.device)
# Get the values for the folded tensor
for i in range(num_folds):
start = i * (target + overlap)
end = start + target + 2 * overlap
folded[i] = x[:, start:end, :]
return folded
@staticmethod
def get_gru_cell(gru):
gru_cell = nn.GRUCell(gru.input_size, gru.hidden_size)
gru_cell.weight_hh.data = gru.weight_hh_l0.data
gru_cell.weight_ih.data = gru.weight_ih_l0.data
gru_cell.bias_hh.data = gru.bias_hh_l0.data
gru_cell.bias_ih.data = gru.bias_ih_l0.data
return gru_cell
@staticmethod
def pad_tensor(x, pad, side="both"):
# NB - this is just a quick method i need right now
# i.e., it won't generalise to other shapes/dims
b, t, c = x.size()
total = t + 2 * pad if side == "both" else t + pad
padded = torch.zeros(b, total, c).to(x.device)
if side in ("before", "both"):
padded[:, pad: pad + t, :] = x
elif side == "after":
padded[:, :t, :] = x
return padded
@staticmethod
def xfade_and_unfold(y, target, overlap):
"""Applies a crossfade and unfolds into a 1d array.
Args:
y (ndarry) : Batched sequences of audio samples
shape=(num_folds, target + 2 * overlap)
dtype=np.float64
overlap (int) : Timesteps for both xfade and rnn warmup
Return:
(ndarry) : audio samples in a 1d array
shape=(total_len)
dtype=np.float64
Details:
y = [[seq1],
[seq2],
[seq3]]
Apply a gain envelope at both ends of the sequences
y = [[seq1_in, seq1_target, seq1_out],
[seq2_in, seq2_target, seq2_out],
[seq3_in, seq3_target, seq3_out]]
Stagger and add up the groups of samples:
[seq1_in, seq1_target, (seq1_out + seq2_in), seq2_target, ...]
"""
num_folds, length = y.shape
target = length - 2 * overlap
total_len = num_folds * (target + overlap) + overlap
# Need some silence for the rnn warmup
silence_len = overlap // 2
fade_len = overlap - silence_len
silence = np.zeros((silence_len), dtype=np.float64)
# Equal power crossfade
t = np.linspace(-1, 1, fade_len, dtype=np.float64)
fade_in = np.sqrt(0.5 * (1 + t))
fade_out = np.sqrt(0.5 * (1 - t))
# Concat the silence to the fades
fade_in = np.concatenate([silence, fade_in])
fade_out = np.concatenate([fade_out, silence])
# Apply the gain to the overlap samples
y[:, :overlap] *= fade_in
y[:, -overlap:] *= fade_out
unfolded = np.zeros((total_len), dtype=np.float64)
# Loop to add up all the samples
for i in range(num_folds):
start = i * (target + overlap)
end = start + target + 2 * overlap
unfolded[start:end] += y[i]
return unfolded