mirror of https://github.com/coqui-ai/TTS.git
293 lines
8.6 KiB
Python
293 lines
8.6 KiB
Python
import os
|
|
import sys
|
|
import tempfile
|
|
|
|
import gradio as gr
|
|
import librosa.display
|
|
import numpy as np
|
|
|
|
import os
|
|
import torch
|
|
import torchaudio
|
|
from TTS.demos.xtts_ft_demo.utils.formatter import format_audio_list, list_audios
|
|
from TTS.demos.xtts_ft_demo.utils.gpt_train import train_gpt
|
|
|
|
from TTS.tts.configs.xtts_config import XttsConfig
|
|
from TTS.tts.models.xtts import Xtts
|
|
|
|
|
|
PORT = 5003
|
|
|
|
def load_model(xtts_checkpoint, xtts_config, xtts_vocab):
|
|
config = XttsConfig()
|
|
config.load_json(xtts_config)
|
|
model = Xtts.init_from_config(config)
|
|
print("Loading XTTS model! ")
|
|
model.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False)
|
|
if torch.cuda.is_available():
|
|
model.cuda()
|
|
return model
|
|
|
|
def run_tts(lang, tts_text, xtts_checkpoint, xtts_config, xtts_vocab, speaker_audio_file, state_vars):
|
|
# ToDo: add the load in other function to fast inference
|
|
model = load_model(xtts_checkpoint, xtts_config, xtts_vocab)
|
|
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=speaker_audio_file, gpt_cond_len=model.config.gpt_cond_len, max_ref_length=model.config.max_ref_len, sound_norm_refs=model.config.sound_norm_refs)
|
|
speaker_embedding
|
|
out = model.inference(
|
|
text=tts_text,
|
|
language=lang,
|
|
gpt_cond_latent=gpt_cond_latent,
|
|
speaker_embedding=speaker_embedding,
|
|
temperature=model.config.temperature, # Add custom parameters here
|
|
length_penalty=model.config.length_penalty,
|
|
repetition_penalty=model.config.repetition_penalty,
|
|
top_k=model.config.top_k,
|
|
top_p=model.config.top_p,
|
|
)
|
|
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
|
|
out["wav"] = torch.tensor(out["wav"]).unsqueeze(0)
|
|
out_path = fp.name
|
|
torchaudio.save(out_path, out["wav"], 24000)
|
|
|
|
return out_path, speaker_audio_file
|
|
|
|
|
|
|
|
|
|
# define a logger to redirect
|
|
class Logger:
|
|
def __init__(self, filename="log.out"):
|
|
self.log_file = filename
|
|
self.terminal = sys.stdout
|
|
self.log = open(self.log_file, "w")
|
|
|
|
def write(self, message):
|
|
self.terminal.write(message)
|
|
self.log.write(message)
|
|
|
|
def flush(self):
|
|
self.terminal.flush()
|
|
self.log.flush()
|
|
|
|
def isatty(self):
|
|
return False
|
|
|
|
# redirect stdout and stderr to a file
|
|
sys.stdout = Logger()
|
|
sys.stderr = sys.stdout
|
|
|
|
|
|
# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
|
import logging
|
|
logging.basicConfig(
|
|
level=logging.INFO,
|
|
format="%(asctime)s [%(levelname)s] %(message)s",
|
|
handlers=[
|
|
logging.StreamHandler(sys.stdout)
|
|
]
|
|
)
|
|
|
|
def read_logs():
|
|
sys.stdout.flush()
|
|
with open(sys.stdout.log_file, "r") as f:
|
|
return f.read()
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
state_vars = gr.State()
|
|
with gr.Tab("Data processing"):
|
|
upload_file = gr.Audio(
|
|
sources="upload",
|
|
label="Select here the audio files that you want to use for XTTS trainining !",
|
|
type="filepath",
|
|
)
|
|
lang = gr.Dropdown(
|
|
label="Dataset Language",
|
|
value="en",
|
|
choices=[
|
|
"en",
|
|
"es",
|
|
"fr",
|
|
"de",
|
|
"it",
|
|
"pt",
|
|
"pl",
|
|
"tr",
|
|
"ru",
|
|
"nl",
|
|
"cs",
|
|
"ar",
|
|
"zh",
|
|
"hu",
|
|
"ko",
|
|
"ja"
|
|
],
|
|
)
|
|
progress_data = gr.Label(
|
|
label="Progress:"
|
|
)
|
|
logs = gr.Textbox(
|
|
label="Logs:",
|
|
interactive=False,
|
|
)
|
|
demo.load(read_logs, None, logs, every=1)
|
|
|
|
prompt_compute_btn = gr.Button(value="Step 1 - Create dataset.")
|
|
|
|
def preprocess_dataset(audio_path, language, state_vars, progress=gr.Progress(track_tqdm=True)):
|
|
# create a temp directory to save the dataset
|
|
out_path = tempfile.TemporaryDirectory().name
|
|
if audio_path is None:
|
|
# ToDo: raise an error
|
|
pass
|
|
else:
|
|
train_meta, eval_meta = format_audio_list([audio_path], target_language=language, out_path=out_path, gradio_progress=progress)
|
|
|
|
state_vars = {}
|
|
state_vars["train_csv"] = train_meta
|
|
state_vars["eval_csv"] = eval_meta
|
|
print(state_vars)
|
|
return "Dataset Processed!", state_vars
|
|
|
|
prompt_compute_btn.click(
|
|
fn=preprocess_dataset,
|
|
inputs=[
|
|
upload_file,
|
|
lang,
|
|
state_vars,
|
|
],
|
|
outputs=[
|
|
progress_data,
|
|
state_vars,
|
|
],
|
|
)
|
|
|
|
|
|
with gr.Tab("Fine-tuning XTTS"):
|
|
num_epochs = gr.Slider(
|
|
label="num_epochs",
|
|
minimum=1,
|
|
maximum=100,
|
|
step=1,
|
|
value=2,# 15
|
|
)
|
|
batch_size = gr.Slider(
|
|
label="batch_size",
|
|
minimum=2,
|
|
maximum=512,
|
|
step=1,
|
|
value=15,
|
|
)
|
|
progress_train = gr.Label(
|
|
label="Progress:"
|
|
)
|
|
logs_tts_train = gr.Textbox(
|
|
label="Logs:",
|
|
interactive=False,
|
|
)
|
|
demo.load(read_logs, None, logs_tts_train, every=1)
|
|
train_btn = gr.Button(value="Step 2 - Run the training")
|
|
|
|
def train_model(language, num_epochs, batch_size, state_vars, output_path="./", progress=gr.Progress(track_tqdm=True)):
|
|
# state_vars = {'train_csv': '/tmp/tmprh4k_vou/metadata_train.csv', 'eval_csv': '/tmp/tmprh4k_vou/metadata_eval.csv'}
|
|
|
|
config_path, original_xtts_checkpoint, vocab_file, exp_path, speaker_wav = train_gpt(language, num_epochs, batch_size, state_vars["train_csv"], state_vars["eval_csv"], output_path=output_path)
|
|
# copy original files to avoid parameters changes issues
|
|
os.system(f"cp {config_path} {exp_path}")
|
|
os.system(f"cp {vocab_file} {exp_path}")
|
|
|
|
ft_xtts_checkpoint = os.path.join(exp_path, "best_model.pth")
|
|
state_vars["config_path"] = config_path
|
|
state_vars["original_xtts_checkpoint"] = original_xtts_checkpoint
|
|
state_vars["vocab_file"] = vocab_file
|
|
state_vars["ft_xtts_checkpoint"] = ft_xtts_checkpoint
|
|
state_vars["speaker_audio_file"] = speaker_wav
|
|
return "Model training done!", state_vars, config_path, vocab_file, ft_xtts_checkpoint, speaker_wav
|
|
|
|
|
|
with gr.Tab("Inference"):
|
|
xtts_checkpoint = gr.Textbox(
|
|
label="XTTS checkpoint path:",
|
|
value="",
|
|
)
|
|
xtts_config = gr.Textbox(
|
|
label="XTTS config path:",
|
|
value="",
|
|
)
|
|
xtts_vocab = gr.Textbox(
|
|
label="XTTS config path:",
|
|
value="",
|
|
)
|
|
speaker_reference_audio = gr.Textbox(
|
|
label="Speaker reference audio:",
|
|
value="",
|
|
)
|
|
tts_language = gr.Dropdown(
|
|
label="Language",
|
|
value="en",
|
|
choices=[
|
|
"en",
|
|
"es",
|
|
"fr",
|
|
"de",
|
|
"it",
|
|
"pt",
|
|
"pl",
|
|
"tr",
|
|
"ru",
|
|
"nl",
|
|
"cs",
|
|
"ar",
|
|
"zh",
|
|
"hu",
|
|
"ko",
|
|
"ja",
|
|
]
|
|
)
|
|
tts_text = gr.Textbox(
|
|
label="Input Text.",
|
|
value="This model sounds really good and above all, it's reasonably fast.",
|
|
)
|
|
tts_btn = gr.Button(value="Step 3 - Inference XTTS model")
|
|
|
|
tts_output_audio = gr.Audio(label="Generated Audio.")
|
|
reference_audio = gr.Audio(label="Reference audio used.")
|
|
|
|
|
|
train_btn.click(
|
|
fn=train_model,
|
|
inputs=[
|
|
lang,
|
|
num_epochs,
|
|
batch_size,
|
|
state_vars,
|
|
],
|
|
outputs=[progress_train, state_vars, xtts_config, xtts_vocab, xtts_checkpoint, speaker_reference_audio],
|
|
)
|
|
|
|
|
|
tts_btn.click(
|
|
fn=run_tts,
|
|
inputs=[
|
|
tts_language,
|
|
tts_text,
|
|
xtts_checkpoint,
|
|
xtts_config,
|
|
xtts_vocab,
|
|
speaker_reference_audio,
|
|
state_vars,
|
|
],
|
|
outputs=[tts_output_audio, reference_audio],
|
|
)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
demo.launch(
|
|
share=True,
|
|
debug=True,
|
|
server_port=PORT,
|
|
server_name="0.0.0.0"
|
|
)
|