mirror of https://github.com/coqui-ai/TTS.git
201 lines
6.3 KiB
Python
201 lines
6.3 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""Argument parser for training scripts."""
|
|
|
|
import argparse
|
|
import glob
|
|
import os
|
|
import re
|
|
|
|
from TTS.tts.utils.generic_utils import check_config_tts
|
|
from TTS.tts.utils.text.symbols import parse_symbols
|
|
from TTS.utils.console_logger import ConsoleLogger
|
|
from TTS.utils.generic_utils import create_experiment_folder, get_git_branch
|
|
from TTS.utils.io import copy_model_files, load_config
|
|
from TTS.utils.tensorboard_logger import TensorboardLogger
|
|
|
|
|
|
def parse_arguments(argv):
|
|
"""Parse command line arguments of training scripts.
|
|
|
|
Parameters
|
|
----------
|
|
argv : list
|
|
This is a list of input arguments as given by sys.argv
|
|
|
|
Returns
|
|
-------
|
|
argparse.Namespace
|
|
Parsed arguments.
|
|
|
|
"""
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--continue_path",
|
|
type=str,
|
|
help=("Training output folder to continue training. Used to continue "
|
|
"a training. If it is used, 'config_path' is ignored."),
|
|
default="",
|
|
required="--config_path" not in argv)
|
|
parser.add_argument(
|
|
"--restore_path",
|
|
type=str,
|
|
help="Model file to be restored. Use to finetune a model.",
|
|
default="")
|
|
parser.add_argument(
|
|
"--config_path",
|
|
type=str,
|
|
help="Path to config file for training.",
|
|
required="--continue_path" not in argv)
|
|
parser.add_argument(
|
|
"--debug",
|
|
type=bool,
|
|
default=False,
|
|
help="Do not verify commit integrity to run training.")
|
|
parser.add_argument(
|
|
"--rank",
|
|
type=int,
|
|
default=0,
|
|
help="DISTRIBUTED: process rank for distributed training.")
|
|
parser.add_argument(
|
|
"--group_id",
|
|
type=str,
|
|
default="",
|
|
help="DISTRIBUTED: process group id.")
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
def get_last_checkpoint(path):
|
|
"""Get latest checkpoint from a list of filenames.
|
|
|
|
It is based on globbing for `*.pth.tar` and the RegEx
|
|
`checkpoint_([0-9]+)`.
|
|
|
|
Parameters
|
|
----------
|
|
path : list
|
|
Path to files to be compared.
|
|
|
|
Raises
|
|
------
|
|
ValueError
|
|
If no checkpoint files are found.
|
|
|
|
Returns
|
|
-------
|
|
last_checkpoint : str
|
|
Last checkpoint filename.
|
|
|
|
"""
|
|
last_checkpoint_num = 0
|
|
last_checkpoint = None
|
|
filenames = glob.glob(
|
|
os.path.join(path, "/*.pth.tar"))
|
|
for filename in filenames:
|
|
try:
|
|
checkpoint_num = int(
|
|
re.search(r"checkpoint_([0-9]+)", filename).groups()[0])
|
|
if checkpoint_num > last_checkpoint_num:
|
|
last_checkpoint_num = checkpoint_num
|
|
last_checkpoint = filename
|
|
except AttributeError: # if there's no match in the filename
|
|
pass
|
|
if last_checkpoint is None:
|
|
raise ValueError(f"No checkpoints in {path}!")
|
|
return last_checkpoint
|
|
|
|
|
|
def process_args(args, model_type):
|
|
"""Process parsed comand line arguments.
|
|
|
|
Args:
|
|
args (argparse.Namespace or dict like): Parsed input arguments.
|
|
model_type (str): Model type used to check config parameters and setup the TensorBoard
|
|
logger. One of:
|
|
- tacotron
|
|
- glow_tts
|
|
- speedy_speech
|
|
- gan
|
|
- wavegrad
|
|
- wavernn
|
|
|
|
Raises:
|
|
ValueError
|
|
If `model_type` is not one of implemented choices.
|
|
|
|
Returns:
|
|
c (TTS.utils.io.AttrDict): Config paramaters.
|
|
out_path (str): Path to save models and logging.
|
|
audio_path (str): Path to save generated test audios.
|
|
c_logger (TTS.utils.console_logger.ConsoleLogger): Class that does logging to the console.
|
|
tb_logger (TTS.utils.tensorboard.TensorboardLogger): Class that does the TensorBoard loggind.
|
|
"""
|
|
if args.continue_path != "":
|
|
args.output_path = args.continue_path
|
|
args.config_path = os.path.join(args.continue_path, "config.json")
|
|
list_of_files = glob.glob(
|
|
os.path.join(args.continue_path, "*.pth.tar")
|
|
) # * means all if need specific format then *.csv
|
|
args.restore_path = max(list_of_files, key=os.path.getctime)
|
|
# checkpoint number based continuing
|
|
# args.restore_path = get_last_checkpoint(args.continue_path)
|
|
print(f" > Training continues for {args.restore_path}")
|
|
|
|
# setup output paths and read configs
|
|
c = load_config(args.config_path)
|
|
if model_type in "tacotron glow_tts speedy_speech":
|
|
model_class = "TTS"
|
|
elif model_type in "gan wavegrad wavernn":
|
|
model_class = "VOCODER"
|
|
else:
|
|
raise ValueError("model type {model_type} not recognized!")
|
|
|
|
if model_class == "TTS":
|
|
check_config_tts(c)
|
|
elif model_class == "VOCODER":
|
|
print("Vocoder config checker not implemented, "
|
|
"skipping ...")
|
|
else:
|
|
raise ValueError(f"model type {model_type} not recognized!")
|
|
|
|
_ = os.path.dirname(os.path.realpath(__file__))
|
|
|
|
if model_type in "tacotron wavegrad wavernn" and c.mixed_precision:
|
|
print(" > Mixed precision mode is ON")
|
|
|
|
out_path = args.continue_path
|
|
if args.continue_path == "":
|
|
out_path = create_experiment_folder(c.output_path, c.run_name,
|
|
args.debug)
|
|
|
|
audio_path = os.path.join(out_path, "test_audios")
|
|
|
|
c_logger = ConsoleLogger()
|
|
|
|
if args.rank == 0:
|
|
os.makedirs(audio_path, exist_ok=True)
|
|
new_fields = {}
|
|
if args.restore_path:
|
|
new_fields["restore_path"] = args.restore_path
|
|
new_fields["github_branch"] = get_git_branch()
|
|
# if model characters are not set in the config file
|
|
# save the default set to the config file for future
|
|
# compatibility.
|
|
if model_class == 'TTS' and not 'characters' in c:
|
|
used_characters = parse_symbols()
|
|
new_fields['characters'] = used_characters
|
|
copy_model_files(c, args.config_path,
|
|
out_path, new_fields)
|
|
os.chmod(audio_path, 0o775)
|
|
os.chmod(out_path, 0o775)
|
|
|
|
log_path = out_path
|
|
|
|
tb_logger = TensorboardLogger(log_path, model_name=model_class)
|
|
|
|
# write model desc to tensorboard
|
|
tb_logger.tb_add_text("model-description", c["run_description"], 0)
|
|
|
|
return c, out_path, audio_path, c_logger, tb_logger
|