mirror of https://github.com/coqui-ai/TTS.git
110 lines
4.0 KiB
Python
110 lines
4.0 KiB
Python
import argparse
|
|
import glob
|
|
import os
|
|
|
|
import numpy as np
|
|
import torch
|
|
from tqdm import tqdm
|
|
|
|
from TTS.speaker_encoder.utils.generic_utils import setup_model
|
|
from TTS.tts.datasets.preprocess import load_meta_data
|
|
from TTS.tts.utils.speakers import save_speaker_mapping
|
|
from TTS.utils.audio import AudioProcessor
|
|
from TTS.config import load_config, BaseDatasetConfig
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description='Compute embedding vectors for each wav file in a dataset. If "target_dataset" is defined, it generates "speakers.json" necessary for training a multi-speaker model.'
|
|
)
|
|
parser.add_argument("model_path", type=str, help="Path to model outputs (checkpoint, tensorboard etc.).")
|
|
parser.add_argument(
|
|
"config_path",
|
|
type=str,
|
|
help="Path to config file for training.",
|
|
)
|
|
parser.add_argument("data_path", type=str, help="Data path for wav files - directory or CSV file")
|
|
parser.add_argument("output_path", type=str, help="path for output speakers.json.")
|
|
parser.add_argument(
|
|
"--target_dataset",
|
|
type=str,
|
|
default="",
|
|
help="Target dataset to pick a processor from TTS.tts.dataset.preprocess. Necessary to create a speakers.json file.",
|
|
)
|
|
parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=False)
|
|
parser.add_argument("--separator", type=str, help="Separator used in file if CSV is passed for data_path", default="|")
|
|
args = parser.parse_args()
|
|
|
|
|
|
c = load_config(args.config_path)
|
|
ap = AudioProcessor(**c["audio"])
|
|
|
|
data_path = args.data_path
|
|
split_ext = os.path.splitext(data_path)
|
|
sep = args.separator
|
|
|
|
if args.target_dataset != "":
|
|
# if target dataset is defined
|
|
dataset_config = [
|
|
BaseDatasetConfig(name=args.target_dataset, path=args.data_path, meta_file_train=None, meta_file_val=None),
|
|
]
|
|
wav_files, _ = load_meta_data(dataset_config, eval_split=False)
|
|
else:
|
|
# if target dataset is not defined
|
|
if len(split_ext) > 0 and split_ext[1].lower() == ".csv":
|
|
# Parse CSV
|
|
print(f"CSV file: {data_path}")
|
|
with open(data_path) as f:
|
|
wav_path = os.path.join(os.path.dirname(data_path), "wavs")
|
|
wav_files = []
|
|
print(f"Separator is: {sep}")
|
|
for line in f:
|
|
components = line.split(sep)
|
|
if len(components) != 2:
|
|
print("Invalid line")
|
|
continue
|
|
wav_file = os.path.join(wav_path, components[0] + ".wav")
|
|
# print(f'wav_file: {wav_file}')
|
|
if os.path.exists(wav_file):
|
|
wav_files.append(wav_file)
|
|
print(f"Count of wavs imported: {len(wav_files)}")
|
|
else:
|
|
# Parse all wav files in data_path
|
|
wav_files = glob.glob(data_path + "/**/*.wav", recursive=True)
|
|
|
|
|
|
os.makedirs(args.output_path, exist_ok=True)
|
|
|
|
# define Encoder model
|
|
model = setup_model(c)
|
|
model.load_state_dict(torch.load(args.model_path)["model"])
|
|
model.eval()
|
|
if args.use_cuda:
|
|
model.cuda()
|
|
|
|
# compute speaker embeddings
|
|
speaker_mapping = {}
|
|
for idx, wav_file in enumerate(tqdm(wav_files)):
|
|
if isinstance(wav_file, list):
|
|
speaker_name = wav_file[2]
|
|
wav_file = wav_file[1]
|
|
|
|
mel_spec = ap.melspectrogram(ap.load_wav(wav_file, sr=ap.sample_rate)).T
|
|
mel_spec = torch.FloatTensor(mel_spec[None, :, :])
|
|
if args.use_cuda:
|
|
mel_spec = mel_spec.cuda()
|
|
embedd = model.compute_embedding(mel_spec)
|
|
embedd = embedd.detach().cpu().numpy()
|
|
|
|
if args.target_dataset != "":
|
|
# create speaker_mapping if target dataset is defined
|
|
wav_file_name = os.path.basename(wav_file)
|
|
speaker_mapping[wav_file_name] = {}
|
|
speaker_mapping[wav_file_name]["name"] = speaker_name
|
|
speaker_mapping[wav_file_name]["embedding"] = embedd.flatten().tolist()
|
|
|
|
if args.target_dataset != "":
|
|
if speaker_mapping:
|
|
# save speaker_mapping if target dataset is defined
|
|
mapping_file_path = os.path.join(args.output_path, "speakers.json")
|
|
save_speaker_mapping(args.output_path, speaker_mapping)
|
|
print("Speaker embedding saved at:", mapping_file_path)
|