coqui-tts/TTS/bin/train_tacotron.py

750 lines
29 KiB
Python
Executable File

#!/usr/bin/env python3
"""Trains Tacotron based TTS models."""
import os
import sys
import time
import traceback
from random import randrange
import numpy as np
import torch
from torch.utils.data import DataLoader
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.layers.losses import TacotronLoss
from TTS.tts.utils.generic_utils import setup_model
from TTS.tts.utils.io import save_best_model, save_checkpoint
from TTS.tts.utils.measures import alignment_diagonal_score
from TTS.tts.utils.speakers import parse_speakers
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.arguments import init_training
from TTS.utils.audio import AudioProcessor
from TTS.utils.distribute import DistributedSampler, apply_gradient_allreduce, init_distributed, reduce_tensor
from TTS.utils.generic_utils import KeepAverage, count_parameters, remove_experiment_folder, set_init_dict
from TTS.utils.radam import RAdam
from TTS.utils.training import (
NoamLR,
adam_weight_decay,
check_update,
gradual_training_scheduler,
set_weight_decay,
setup_torch_training_env,
)
use_cuda, num_gpus = setup_torch_training_env(True, False)
def setup_loader(ap, r, is_val=False, verbose=False, dataset=None):
if is_val and not config.run_eval:
loader = None
else:
if dataset is None:
dataset = MyDataset(
r,
config.text_cleaner,
compute_linear_spec=config.model.lower() == "tacotron",
meta_data=meta_data_eval if is_val else meta_data_train,
ap=ap,
tp=config.characters,
add_blank=config["add_blank"],
batch_group_size=0 if is_val else config.batch_group_size * config.batch_size,
min_seq_len=config.min_seq_len,
max_seq_len=config.max_seq_len,
phoneme_cache_path=config.phoneme_cache_path,
use_phonemes=config.use_phonemes,
phoneme_language=config.phoneme_language,
enable_eos_bos=config.enable_eos_bos_chars,
verbose=verbose,
speaker_mapping=(
speaker_mapping
if (config.use_speaker_embedding and config.use_external_speaker_embedding_file)
else None
),
)
if config.use_phonemes and config.compute_input_seq_cache:
# precompute phonemes to have a better estimate of sequence lengths.
dataset.compute_input_seq(config.num_loader_workers)
dataset.sort_items()
sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(
dataset,
batch_size=config.eval_batch_size if is_val else config.batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
drop_last=False,
sampler=sampler,
num_workers=config.num_val_loader_workers if is_val else config.num_loader_workers,
pin_memory=False,
)
return loader
def format_data(data):
# setup input data
text_input = data[0]
text_lengths = data[1]
speaker_names = data[2]
linear_input = data[3] if config.model.lower() in ["tacotron"] else None
mel_input = data[4]
mel_lengths = data[5]
stop_targets = data[6]
max_text_length = torch.max(text_lengths.float())
max_spec_length = torch.max(mel_lengths.float())
if config.use_speaker_embedding:
if config.use_external_speaker_embedding_file:
speaker_embeddings = data[8]
speaker_ids = None
else:
speaker_ids = [speaker_mapping[speaker_name] for speaker_name in speaker_names]
speaker_ids = torch.LongTensor(speaker_ids)
speaker_embeddings = None
else:
speaker_embeddings = None
speaker_ids = None
# set stop targets view, we predict a single stop token per iteration.
stop_targets = stop_targets.view(text_input.shape[0], stop_targets.size(1) // config.r, -1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze(2)
# dispatch data to GPU
if use_cuda:
text_input = text_input.cuda(non_blocking=True)
text_lengths = text_lengths.cuda(non_blocking=True)
mel_input = mel_input.cuda(non_blocking=True)
mel_lengths = mel_lengths.cuda(non_blocking=True)
linear_input = linear_input.cuda(non_blocking=True) if config.model.lower() in ["tacotron"] else None
stop_targets = stop_targets.cuda(non_blocking=True)
if speaker_ids is not None:
speaker_ids = speaker_ids.cuda(non_blocking=True)
if speaker_embeddings is not None:
speaker_embeddings = speaker_embeddings.cuda(non_blocking=True)
return (
text_input,
text_lengths,
mel_input,
mel_lengths,
linear_input,
stop_targets,
speaker_ids,
speaker_embeddings,
max_text_length,
max_spec_length,
)
def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap, global_step, epoch, scaler, scaler_st):
model.train()
epoch_time = 0
keep_avg = KeepAverage()
if use_cuda:
batch_n_iter = int(len(data_loader.dataset) / (config.batch_size * num_gpus))
else:
batch_n_iter = int(len(data_loader.dataset) / config.batch_size)
end_time = time.time()
c_logger.print_train_start()
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# format data
(
text_input,
text_lengths,
mel_input,
mel_lengths,
linear_input,
stop_targets,
speaker_ids,
speaker_embeddings,
max_text_length,
max_spec_length,
) = format_data(data)
loader_time = time.time() - end_time
global_step += 1
# setup lr
if config.noam_schedule:
scheduler.step()
optimizer.zero_grad()
if optimizer_st:
optimizer_st.zero_grad()
with torch.cuda.amp.autocast(enabled=config.mixed_precision):
# forward pass model
if config.bidirectional_decoder or config.double_decoder_consistency:
(
decoder_output,
postnet_output,
alignments,
stop_tokens,
decoder_backward_output,
alignments_backward,
) = model(
text_input,
text_lengths,
mel_input,
mel_lengths,
speaker_ids=speaker_ids,
speaker_embeddings=speaker_embeddings,
)
else:
decoder_output, postnet_output, alignments, stop_tokens = model(
text_input,
text_lengths,
mel_input,
mel_lengths,
speaker_ids=speaker_ids,
speaker_embeddings=speaker_embeddings,
)
decoder_backward_output = None
alignments_backward = None
# set the [alignment] lengths wrt reduction factor for guided attention
if mel_lengths.max() % model.decoder.r != 0:
alignment_lengths = (
mel_lengths + (model.decoder.r - (mel_lengths.max() % model.decoder.r))
) // model.decoder.r
else:
alignment_lengths = mel_lengths // model.decoder.r
# compute loss
loss_dict = criterion(
postnet_output,
decoder_output,
mel_input,
linear_input,
stop_tokens,
stop_targets,
mel_lengths,
decoder_backward_output,
alignments,
alignment_lengths,
alignments_backward,
text_lengths,
)
# check nan loss
if torch.isnan(loss_dict["loss"]).any():
raise RuntimeError(f"Detected NaN loss at step {global_step}.")
# optimizer step
if config.mixed_precision:
# model optimizer step in mixed precision mode
scaler.scale(loss_dict["loss"]).backward()
scaler.unscale_(optimizer)
optimizer, current_lr = adam_weight_decay(optimizer)
grad_norm, _ = check_update(model, config.grad_clip, ignore_stopnet=True)
scaler.step(optimizer)
scaler.update()
# stopnet optimizer step
if config.separate_stopnet:
scaler_st.scale(loss_dict["stopnet_loss"]).backward()
scaler.unscale_(optimizer_st)
optimizer_st, _ = adam_weight_decay(optimizer_st)
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
scaler_st.step(optimizer)
scaler_st.update()
else:
grad_norm_st = 0
else:
# main model optimizer step
loss_dict["loss"].backward()
optimizer, current_lr = adam_weight_decay(optimizer)
grad_norm, _ = check_update(model, config.grad_clip, ignore_stopnet=True)
optimizer.step()
# stopnet optimizer step
if config.separate_stopnet:
loss_dict["stopnet_loss"].backward()
optimizer_st, _ = adam_weight_decay(optimizer_st)
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
optimizer_st.step()
else:
grad_norm_st = 0
# compute alignment error (the lower the better )
align_error = 1 - alignment_diagonal_score(alignments)
loss_dict["align_error"] = align_error
step_time = time.time() - start_time
epoch_time += step_time
# aggregate losses from processes
if num_gpus > 1:
loss_dict["postnet_loss"] = reduce_tensor(loss_dict["postnet_loss"].data, num_gpus)
loss_dict["decoder_loss"] = reduce_tensor(loss_dict["decoder_loss"].data, num_gpus)
loss_dict["loss"] = reduce_tensor(loss_dict["loss"].data, num_gpus)
loss_dict["stopnet_loss"] = (
reduce_tensor(loss_dict["stopnet_loss"].data, num_gpus) if config.stopnet else loss_dict["stopnet_loss"]
)
# detach loss values
loss_dict_new = dict()
for key, value in loss_dict.items():
if isinstance(value, (int, float)):
loss_dict_new[key] = value
else:
loss_dict_new[key] = value.item()
loss_dict = loss_dict_new
# update avg stats
update_train_values = dict()
for key, value in loss_dict.items():
update_train_values["avg_" + key] = value
update_train_values["avg_loader_time"] = loader_time
update_train_values["avg_step_time"] = step_time
keep_avg.update_values(update_train_values)
# print training progress
if global_step % config.print_step == 0:
log_dict = {
"max_spec_length": [max_spec_length, 1], # value, precision
"max_text_length": [max_text_length, 1],
"step_time": [step_time, 4],
"loader_time": [loader_time, 2],
"current_lr": current_lr,
}
c_logger.print_train_step(batch_n_iter, num_iter, global_step, log_dict, loss_dict, keep_avg.avg_values)
if args.rank == 0:
# Plot Training Iter Stats
# reduce TB load
if global_step % config.tb_plot_step == 0:
iter_stats = {
"lr": current_lr,
"grad_norm": grad_norm,
"grad_norm_st": grad_norm_st,
"step_time": step_time,
}
iter_stats.update(loss_dict)
tb_logger.tb_train_iter_stats(global_step, iter_stats)
if global_step % config.save_step == 0:
if config.checkpoint:
# save model
save_checkpoint(
model,
optimizer,
global_step,
epoch,
model.decoder.r,
OUT_PATH,
optimizer_st=optimizer_st,
model_loss=loss_dict["postnet_loss"],
characters=model_characters,
scaler=scaler.state_dict() if config.mixed_precision else None,
)
# Diagnostic visualizations
const_spec = postnet_output[0].data.cpu().numpy()
gt_spec = (
linear_input[0].data.cpu().numpy()
if config.model in ["Tacotron", "TacotronGST"]
else mel_input[0].data.cpu().numpy()
)
align_img = alignments[0].data.cpu().numpy()
figures = {
"prediction": plot_spectrogram(const_spec, ap, output_fig=False),
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
"alignment": plot_alignment(align_img, output_fig=False),
}
if config.bidirectional_decoder or config.double_decoder_consistency:
figures["alignment_backward"] = plot_alignment(
alignments_backward[0].data.cpu().numpy(), output_fig=False
)
tb_logger.tb_train_figures(global_step, figures)
# Sample audio
if config.model in ["Tacotron", "TacotronGST"]:
train_audio = ap.inv_spectrogram(const_spec.T)
else:
train_audio = ap.inv_melspectrogram(const_spec.T)
tb_logger.tb_train_audios(global_step, {"TrainAudio": train_audio}, config.audio["sample_rate"])
end_time = time.time()
# print epoch stats
c_logger.print_train_epoch_end(global_step, epoch, epoch_time, keep_avg)
# Plot Epoch Stats
if args.rank == 0:
epoch_stats = {"epoch_time": epoch_time}
epoch_stats.update(keep_avg.avg_values)
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
if config.tb_model_param_stats:
tb_logger.tb_model_weights(model, global_step)
return keep_avg.avg_values, global_step
@torch.no_grad()
def evaluate(data_loader, model, criterion, ap, global_step, epoch):
model.eval()
epoch_time = 0
keep_avg = KeepAverage()
c_logger.print_eval_start()
if data_loader is not None:
for num_iter, data in enumerate(data_loader):
start_time = time.time()
# format data
(
text_input,
text_lengths,
mel_input,
mel_lengths,
linear_input,
stop_targets,
speaker_ids,
speaker_embeddings,
_,
_,
) = format_data(data)
assert mel_input.shape[1] % model.decoder.r == 0
# forward pass model
if config.bidirectional_decoder or config.double_decoder_consistency:
(
decoder_output,
postnet_output,
alignments,
stop_tokens,
decoder_backward_output,
alignments_backward,
) = model(
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings
)
else:
decoder_output, postnet_output, alignments, stop_tokens = model(
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings
)
decoder_backward_output = None
alignments_backward = None
# set the alignment lengths wrt reduction factor for guided attention
if mel_lengths.max() % model.decoder.r != 0:
alignment_lengths = (
mel_lengths + (model.decoder.r - (mel_lengths.max() % model.decoder.r))
) // model.decoder.r
else:
alignment_lengths = mel_lengths // model.decoder.r
# compute loss
loss_dict = criterion(
postnet_output,
decoder_output,
mel_input,
linear_input,
stop_tokens,
stop_targets,
mel_lengths,
decoder_backward_output,
alignments,
alignment_lengths,
alignments_backward,
text_lengths,
)
# step time
step_time = time.time() - start_time
epoch_time += step_time
# compute alignment score
align_error = 1 - alignment_diagonal_score(alignments)
loss_dict["align_error"] = align_error
# aggregate losses from processes
if num_gpus > 1:
loss_dict["postnet_loss"] = reduce_tensor(loss_dict["postnet_loss"].data, num_gpus)
loss_dict["decoder_loss"] = reduce_tensor(loss_dict["decoder_loss"].data, num_gpus)
if config.stopnet:
loss_dict["stopnet_loss"] = reduce_tensor(loss_dict["stopnet_loss"].data, num_gpus)
# detach loss values
loss_dict_new = dict()
for key, value in loss_dict.items():
if isinstance(value, (int, float)):
loss_dict_new[key] = value
else:
loss_dict_new[key] = value.item()
loss_dict = loss_dict_new
# update avg stats
update_train_values = dict()
for key, value in loss_dict.items():
update_train_values["avg_" + key] = value
keep_avg.update_values(update_train_values)
if config.print_eval:
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)
if args.rank == 0:
# Diagnostic visualizations
idx = np.random.randint(mel_input.shape[0])
const_spec = postnet_output[idx].data.cpu().numpy()
gt_spec = (
linear_input[idx].data.cpu().numpy()
if config.model in ["Tacotron", "TacotronGST"]
else mel_input[idx].data.cpu().numpy()
)
align_img = alignments[idx].data.cpu().numpy()
eval_figures = {
"prediction": plot_spectrogram(const_spec, ap, output_fig=False),
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
"alignment": plot_alignment(align_img, output_fig=False),
}
# Sample audio
if config.model.lower() in ["tacotron"]:
eval_audio = ap.inv_spectrogram(const_spec.T)
else:
eval_audio = ap.inv_melspectrogram(const_spec.T)
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio}, config.audio["sample_rate"])
# Plot Validation Stats
if config.bidirectional_decoder or config.double_decoder_consistency:
align_b_img = alignments_backward[idx].data.cpu().numpy()
eval_figures["alignment2"] = plot_alignment(align_b_img, output_fig=False)
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
tb_logger.tb_eval_figures(global_step, eval_figures)
if args.rank == 0 and epoch > config.test_delay_epochs:
if config.test_sentences_file:
with open(config.test_sentences_file, "r") as f:
test_sentences = [s.strip() for s in f.readlines()]
else:
test_sentences = [
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
"Be a voice, not an echo.",
"I'm sorry Dave. I'm afraid I can't do that.",
"This cake is great. It's so delicious and moist.",
"Prior to November 22, 1963.",
]
# test sentences
test_audios = {}
test_figures = {}
print(" | > Synthesizing test sentences")
speaker_id = 0 if config.use_speaker_embedding else None
speaker_embedding = (
speaker_mapping[list(speaker_mapping.keys())[randrange(len(speaker_mapping) - 1)]]["embedding"]
if config.use_external_speaker_embedding_file and config.use_speaker_embedding
else None
)
style_wav = config.gst_style_input
if style_wav is None and config.gst is not None:
# inicialize GST with zero dict.
style_wav = {}
print("WARNING: You don't provided a gst style wav, for this reason we use a zero tensor!")
for i in range(config.gst["gst_num_style_tokens"]):
style_wav[str(i)] = 0
for idx, test_sentence in enumerate(test_sentences):
try:
wav, alignment, decoder_output, postnet_output, stop_tokens, _ = synthesis(
model,
test_sentence,
config,
use_cuda,
ap,
speaker_id=speaker_id,
speaker_embedding=speaker_embedding,
style_wav=style_wav,
truncated=False,
enable_eos_bos_chars=config.enable_eos_bos_chars, # pylint: disable=unused-argument
use_griffin_lim=True,
do_trim_silence=False,
)
file_path = os.path.join(AUDIO_PATH, str(global_step))
os.makedirs(file_path, exist_ok=True)
file_path = os.path.join(file_path, "TestSentence_{}.wav".format(idx))
ap.save_wav(wav, file_path)
test_audios["{}-audio".format(idx)] = wav
test_figures["{}-prediction".format(idx)] = plot_spectrogram(postnet_output, ap, output_fig=False)
test_figures["{}-alignment".format(idx)] = plot_alignment(alignment, output_fig=False)
except: # pylint: disable=bare-except
print(" !! Error creating Test Sentence -", idx)
traceback.print_exc()
tb_logger.tb_test_audios(global_step, test_audios, config.audio["sample_rate"])
tb_logger.tb_test_figures(global_step, test_figures)
return keep_avg.avg_values
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data_train, meta_data_eval, speaker_mapping, symbols, phonemes, model_characters
# Audio processor
ap = AudioProcessor(**config.audio.to_dict())
# setup custom characters if set in config file.
if config.characters is not None:
symbols, phonemes = make_symbols(**config.characters.to_dict())
# DISTRUBUTED
if num_gpus > 1:
init_distributed(args.rank, num_gpus, args.group_id, config.distributed["backend"], config.distributed["url"])
num_chars = len(phonemes) if config.use_phonemes else len(symbols)
model_characters = phonemes if config.use_phonemes else symbols
# load data instances
meta_data_train, meta_data_eval = load_meta_data(config.datasets)
# set the portion of the data used for training
if config.has("train_portion"):
meta_data_train = meta_data_train[: int(len(meta_data_train) * config.train_portion)]
if config.has("eval_portion"):
meta_data_eval = meta_data_eval[: int(len(meta_data_eval) * config.eval_portion)]
# parse speakers
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(config, args, meta_data_train, OUT_PATH)
model = setup_model(num_chars, num_speakers, config, speaker_embedding_dim)
# scalers for mixed precision training
scaler = torch.cuda.amp.GradScaler() if config.mixed_precision else None
scaler_st = torch.cuda.amp.GradScaler() if config.mixed_precision and config.separate_stopnet else None
params = set_weight_decay(model, config.wd)
optimizer = RAdam(params, lr=config.lr, weight_decay=0)
if config.stopnet and config.separate_stopnet:
optimizer_st = RAdam(model.decoder.stopnet.parameters(), lr=config.lr, weight_decay=0)
else:
optimizer_st = None
# setup criterion
criterion = TacotronLoss(config, stopnet_pos_weight=config.stopnet_pos_weight, ga_sigma=0.4)
if args.restore_path:
print(f" > Restoring from {os.path.basename(args.restore_path)}...")
checkpoint = torch.load(args.restore_path, map_location="cpu")
try:
print(" > Restoring Model...")
model.load_state_dict(checkpoint["model"])
# optimizer restore
print(" > Restoring Optimizer...")
optimizer.load_state_dict(checkpoint["optimizer"])
if "scaler" in checkpoint and config.mixed_precision:
print(" > Restoring AMP Scaler...")
scaler.load_state_dict(checkpoint["scaler"])
except (KeyError, RuntimeError):
print(" > Partial model initialization...")
model_dict = model.state_dict()
model_dict = set_init_dict(model_dict, checkpoint["model"], config)
model.load_state_dict(model_dict)
del model_dict
for group in optimizer.param_groups:
group["lr"] = config.lr
print(" > Model restored from step %d" % checkpoint["step"], flush=True)
args.restore_step = checkpoint["step"]
else:
args.restore_step = 0
if use_cuda:
model.cuda()
criterion.cuda()
# DISTRUBUTED
if num_gpus > 1:
model = apply_gradient_allreduce(model)
if config.noam_schedule:
scheduler = NoamLR(optimizer, warmup_steps=config.warmup_steps, last_epoch=args.restore_step - 1)
else:
scheduler = None
num_params = count_parameters(model)
print("\n > Model has {} parameters".format(num_params), flush=True)
if args.restore_step == 0 or not args.best_path:
best_loss = float("inf")
print(" > Starting with inf best loss.")
else:
print(" > Restoring best loss from " f"{os.path.basename(args.best_path)} ...")
best_loss = torch.load(args.best_path, map_location="cpu")["model_loss"]
print(f" > Starting with loaded last best loss {best_loss}.")
keep_all_best = config.keep_all_best
keep_after = config.keep_after # void if keep_all_best False
# define data loaders
train_loader = setup_loader(ap, model.decoder.r, is_val=False, verbose=True)
eval_loader = setup_loader(ap, model.decoder.r, is_val=True)
global_step = args.restore_step
for epoch in range(0, config.epochs):
c_logger.print_epoch_start(epoch, config.epochs)
# set gradual training
if config.gradual_training is not None:
r, config.batch_size = gradual_training_scheduler(global_step, config)
config.r = r
model.decoder.set_r(r)
if config.bidirectional_decoder:
model.decoder_backward.set_r(r)
train_loader.dataset.outputs_per_step = r
eval_loader.dataset.outputs_per_step = r
train_loader = setup_loader(ap, model.decoder.r, is_val=False, dataset=train_loader.dataset)
eval_loader = setup_loader(ap, model.decoder.r, is_val=True, dataset=eval_loader.dataset)
print("\n > Number of output frames:", model.decoder.r)
# train one epoch
train_avg_loss_dict, global_step = train(
train_loader,
model,
criterion,
optimizer,
optimizer_st,
scheduler,
ap,
global_step,
epoch,
scaler,
scaler_st,
)
# eval one epoch
eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap, global_step, epoch)
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
target_loss = train_avg_loss_dict["avg_postnet_loss"]
if config.run_eval:
target_loss = eval_avg_loss_dict["avg_postnet_loss"]
best_loss = save_best_model(
target_loss,
best_loss,
model,
optimizer,
global_step,
epoch,
config.r,
OUT_PATH,
model_characters,
keep_all_best=keep_all_best,
keep_after=keep_after,
scaler=scaler.state_dict() if config.mixed_precision else None,
)
if __name__ == "__main__":
args, config, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = init_training(sys.argv)
try:
main(args)
except KeyboardInterrupt:
remove_experiment_folder(OUT_PATH)
try:
sys.exit(0)
except SystemExit:
os._exit(0) # pylint: disable=protected-access
except Exception: # pylint: disable=broad-except
remove_experiment_folder(OUT_PATH)
traceback.print_exc()
sys.exit(1)