coqui-tts/mozilla_voice_tts/tts/models/tacotron2.py

192 lines
9.5 KiB
Python

import torch
from torch import nn
from mozilla_voice_tts.tts.layers.gst_layers import GST
from mozilla_voice_tts.tts.layers.tacotron2 import Decoder, Encoder, Postnet
from mozilla_voice_tts.tts.models.tacotron_abstract import TacotronAbstract
# TODO: match function arguments with tacotron
class Tacotron2(TacotronAbstract):
def __init__(self,
num_chars,
num_speakers,
r,
postnet_output_dim=80,
decoder_output_dim=80,
attn_type='original',
attn_win=False,
attn_norm="softmax",
prenet_type="original",
prenet_dropout=True,
forward_attn=False,
trans_agent=False,
forward_attn_mask=False,
location_attn=True,
attn_K=5,
separate_stopnet=True,
bidirectional_decoder=False,
double_decoder_consistency=False,
ddc_r=None,
gst=False,
gst_embedding_dim=512,
gst_num_heads=4,
gst_style_tokens=10):
super(Tacotron2,
self).__init__(num_chars, num_speakers, r, postnet_output_dim,
decoder_output_dim, attn_type, attn_win,
attn_norm, prenet_type, prenet_dropout,
forward_attn, trans_agent, forward_attn_mask,
location_attn, attn_K, separate_stopnet,
bidirectional_decoder, double_decoder_consistency,
ddc_r, gst)
# init layer dims
speaker_embedding_dim = 512 if num_speakers > 1 else 0
gst_embedding_dim = gst_embedding_dim if self.gst else 0
decoder_in_features = 512+speaker_embedding_dim+gst_embedding_dim
encoder_in_features = 512 if num_speakers > 1 else 512
proj_speaker_dim = 80 if num_speakers > 1 else 0
# base layers
self.embedding = nn.Embedding(num_chars, 512, padding_idx=0)
# speaker embedding layer
if num_speakers > 1:
self.speaker_embedding = nn.Embedding(num_speakers, speaker_embedding_dim)
self.speaker_embedding.weight.data.normal_(0, 0.3)
self.encoder = Encoder(encoder_in_features)
self.decoder = Decoder(decoder_in_features, self.decoder_output_dim, r, attn_type, attn_win,
attn_norm, prenet_type, prenet_dropout,
forward_attn, trans_agent, forward_attn_mask,
location_attn, attn_K, separate_stopnet)
self.postnet = Postnet(self.postnet_output_dim)
# global style token layers
if self.gst:
self.gst_layer = GST(num_mel=80,
num_heads=gst_num_heads,
num_style_tokens=gst_style_tokens,
embedding_dim=gst_embedding_dim)
# backward pass decoder
if self.bidirectional_decoder:
self._init_backward_decoder()
# setup DDC
if self.double_decoder_consistency:
self.coarse_decoder = Decoder(
decoder_in_features, self.decoder_output_dim, ddc_r, attn_type,
attn_win, attn_norm, prenet_type, prenet_dropout, forward_attn,
trans_agent, forward_attn_mask, location_attn, attn_K,
separate_stopnet)
@staticmethod
def shape_outputs(mel_outputs, mel_outputs_postnet, alignments):
mel_outputs = mel_outputs.transpose(1, 2)
mel_outputs_postnet = mel_outputs_postnet.transpose(1, 2)
return mel_outputs, mel_outputs_postnet, alignments
def forward(self, text, text_lengths, mel_specs=None, mel_lengths=None, speaker_ids=None):
# compute mask for padding
# B x T_in_max (boolean)
input_mask, output_mask = self.compute_masks(text_lengths, mel_lengths)
# B x D_embed x T_in_max
embedded_inputs = self.embedding(text).transpose(1, 2)
# B x T_in_max x D_en
encoder_outputs = self.encoder(embedded_inputs, text_lengths)
if self.num_speakers > 1:
embedded_speakers = self.speaker_embedding(speaker_ids)[:, None]
embedded_speakers = embedded_speakers.repeat(1, encoder_outputs.size(1), 1)
if hasattr(self, 'gst'):
# B x gst_dim
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, mel_specs)
encoder_outputs = torch.cat([encoder_outputs, embedded_gst, embedded_speakers], dim=-1)
else:
encoder_outputs = torch.cat([encoder_outputs, embedded_speakers], dim=-1)
else:
if hasattr(self, 'gst'):
# B x gst_dim
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, mel_specs)
encoder_outputs = torch.cat([encoder_outputs, embedded_gst], dim=-1)
encoder_outputs = encoder_outputs * input_mask.unsqueeze(2).expand_as(encoder_outputs)
# B x mel_dim x T_out -- B x T_out//r x T_in -- B x T_out//r
decoder_outputs, alignments, stop_tokens = self.decoder(
encoder_outputs, mel_specs, input_mask)
# sequence masking
if mel_lengths is not None:
decoder_outputs = decoder_outputs * output_mask.unsqueeze(1).expand_as(decoder_outputs)
# B x mel_dim x T_out
postnet_outputs = self.postnet(decoder_outputs)
postnet_outputs = decoder_outputs + postnet_outputs
# sequence masking
if output_mask is not None:
postnet_outputs = postnet_outputs * output_mask.unsqueeze(1).expand_as(postnet_outputs)
# B x T_out x mel_dim -- B x T_out x mel_dim -- B x T_out//r x T_in
decoder_outputs, postnet_outputs, alignments = self.shape_outputs(
decoder_outputs, postnet_outputs, alignments)
if self.bidirectional_decoder:
decoder_outputs_backward, alignments_backward = self._backward_pass(mel_specs, encoder_outputs, input_mask)
return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
if self.double_decoder_consistency:
decoder_outputs_backward, alignments_backward = self._coarse_decoder_pass(mel_specs, encoder_outputs, alignments, input_mask)
return decoder_outputs, postnet_outputs, alignments, stop_tokens, decoder_outputs_backward, alignments_backward
return decoder_outputs, postnet_outputs, alignments, stop_tokens
@torch.no_grad()
def inference(self, text, speaker_ids=None, style_mel=None):
embedded_inputs = self.embedding(text).transpose(1, 2)
encoder_outputs = self.encoder.inference(embedded_inputs)
if self.num_speakers > 1:
embedded_speakers = self.speaker_embedding(speaker_ids)[:, None]
embedded_speakers = embedded_speakers.repeat(1, encoder_outputs.size(1), 1)
if hasattr(self, 'gst'):
# B x gst_dim
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, style_mel)
encoder_outputs = torch.cat([encoder_outputs, embedded_gst, embedded_speakers], dim=-1)
else:
encoder_outputs = torch.cat([encoder_outputs, embedded_speakers], dim=-1)
else:
if hasattr(self, 'gst'):
# B x gst_dim
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, style_mel)
encoder_outputs = torch.cat([encoder_outputs, embedded_gst], dim=-1)
decoder_outputs, alignments, stop_tokens = self.decoder.inference(
encoder_outputs)
postnet_outputs = self.postnet(decoder_outputs)
postnet_outputs = decoder_outputs + postnet_outputs
decoder_outputs, postnet_outputs, alignments = self.shape_outputs(
decoder_outputs, postnet_outputs, alignments)
return decoder_outputs, postnet_outputs, alignments, stop_tokens
def inference_truncated(self, text, speaker_ids=None, style_mel=None):
"""
Preserve model states for continuous inference
"""
embedded_inputs = self.embedding(text).transpose(1, 2)
encoder_outputs = self.encoder.inference_truncated(embedded_inputs)
if self.num_speakers > 1:
embedded_speakers = self.speaker_embedding(speaker_ids)[:, None]
embedded_speakers = embedded_speakers.repeat(1, encoder_outputs.size(1), 1)
if hasattr(self, 'gst'):
# B x gst_dim
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, style_mel)
encoder_outputs = torch.cat([encoder_outputs, embedded_gst, embedded_speakers], dim=-1)
else:
encoder_outputs = torch.cat([encoder_outputs, embedded_speakers], dim=-1)
else:
if hasattr(self, 'gst'):
# B x gst_dim
encoder_outputs, embedded_gst = self.compute_gst(encoder_outputs, style_mel)
encoder_outputs = torch.cat([encoder_outputs, embedded_gst], dim=-1)
mel_outputs, alignments, stop_tokens = self.decoder.inference_truncated(
encoder_outputs)
mel_outputs_postnet = self.postnet(mel_outputs)
mel_outputs_postnet = mel_outputs + mel_outputs_postnet
mel_outputs, mel_outputs_postnet, alignments = self.shape_outputs(
mel_outputs, mel_outputs_postnet, alignments)
return mel_outputs, mel_outputs_postnet, alignments, stop_tokens