coqui-tts/mozilla_voice_tts/tts/utils/generic_utils.py

254 lines
13 KiB
Python

import torch
import importlib
import numpy as np
from collections import Counter
from TTS.utils.generic_utils import check_argument
def split_dataset(items):
is_multi_speaker = False
speakers = [item[-1] for item in items]
is_multi_speaker = len(set(speakers)) > 1
eval_split_size = 500 if len(items) * 0.01 > 500 else int(
len(items) * 0.01)
assert eval_split_size > 0, " [!] You do not have enough samples to train. You need at least 100 samples."
np.random.seed(0)
np.random.shuffle(items)
if is_multi_speaker:
items_eval = []
# most stupid code ever -- Fix it !
while len(items_eval) < eval_split_size:
speakers = [item[-1] for item in items]
speaker_counter = Counter(speakers)
item_idx = np.random.randint(0, len(items))
if speaker_counter[items[item_idx][-1]] > 1:
items_eval.append(items[item_idx])
del items[item_idx]
return items_eval, items
return items[:eval_split_size], items[eval_split_size:]
# from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1
def sequence_mask(sequence_length, max_len=None):
if max_len is None:
max_len = sequence_length.data.max()
batch_size = sequence_length.size(0)
seq_range = torch.arange(0, max_len).long()
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
if sequence_length.is_cuda:
seq_range_expand = seq_range_expand.to(sequence_length.device)
seq_length_expand = (
sequence_length.unsqueeze(1).expand_as(seq_range_expand))
# B x T_max
return seq_range_expand < seq_length_expand
def setup_model(num_chars, num_speakers, c):
print(" > Using model: {}".format(c.model))
MyModel = importlib.import_module('TTS.tts.models.' + c.model.lower())
MyModel = getattr(MyModel, c.model)
if c.model.lower() in "tacotron":
model = MyModel(num_chars=num_chars,
num_speakers=num_speakers,
r=c.r,
postnet_output_dim=int(c.audio['fft_size'] / 2 + 1),
decoder_output_dim=c.audio['num_mels'],
gst=c.use_gst,
memory_size=c.memory_size,
attn_type=c.attention_type,
attn_win=c.windowing,
attn_norm=c.attention_norm,
prenet_type=c.prenet_type,
prenet_dropout=c.prenet_dropout,
forward_attn=c.use_forward_attn,
trans_agent=c.transition_agent,
forward_attn_mask=c.forward_attn_mask,
location_attn=c.location_attn,
attn_K=c.attention_heads,
separate_stopnet=c.separate_stopnet,
bidirectional_decoder=c.bidirectional_decoder,
double_decoder_consistency=c.double_decoder_consistency,
ddc_r=c.ddc_r)
elif c.model.lower() == "tacotron2":
model = MyModel(num_chars=num_chars,
num_speakers=num_speakers,
r=c.r,
postnet_output_dim=c.audio['num_mels'],
decoder_output_dim=c.audio['num_mels'],
gst=c.use_gst,
attn_type=c.attention_type,
attn_win=c.windowing,
attn_norm=c.attention_norm,
prenet_type=c.prenet_type,
prenet_dropout=c.prenet_dropout,
forward_attn=c.use_forward_attn,
trans_agent=c.transition_agent,
forward_attn_mask=c.forward_attn_mask,
location_attn=c.location_attn,
attn_K=c.attention_heads,
separate_stopnet=c.separate_stopnet,
bidirectional_decoder=c.bidirectional_decoder,
double_decoder_consistency=c.double_decoder_consistency,
ddc_r=c.ddc_r)
return model
class KeepAverage():
def __init__(self):
self.avg_values = {}
self.iters = {}
def __getitem__(self, key):
return self.avg_values[key]
def items(self):
return self.avg_values.items()
def add_value(self, name, init_val=0, init_iter=0):
self.avg_values[name] = init_val
self.iters[name] = init_iter
def update_value(self, name, value, weighted_avg=False):
if name not in self.avg_values:
# add value if not exist before
self.add_value(name, init_val=value)
else:
# else update existing value
if weighted_avg:
self.avg_values[name] = 0.99 * self.avg_values[name] + 0.01 * value
self.iters[name] += 1
else:
self.avg_values[name] = self.avg_values[name] * \
self.iters[name] + value
self.iters[name] += 1
self.avg_values[name] /= self.iters[name]
def add_values(self, name_dict):
for key, value in name_dict.items():
self.add_value(key, init_val=value)
def update_values(self, value_dict):
for key, value in value_dict.items():
self.update_value(key, value)
def check_config(c):
check_argument('model', c, enum_list=['tacotron', 'tacotron2'], restricted=True, val_type=str)
check_argument('run_name', c, restricted=True, val_type=str)
check_argument('run_description', c, val_type=str)
# AUDIO
check_argument('audio', c, restricted=True, val_type=dict)
# audio processing parameters
check_argument('num_mels', c['audio'], restricted=True, val_type=int, min_val=10, max_val=2056)
check_argument('fft_size', c['audio'], restricted=True, val_type=int, min_val=128, max_val=4058)
check_argument('sample_rate', c['audio'], restricted=True, val_type=int, min_val=512, max_val=100000)
check_argument('frame_length_ms', c['audio'], restricted=True, val_type=float, min_val=10, max_val=1000, alternative='win_length')
check_argument('frame_shift_ms', c['audio'], restricted=True, val_type=float, min_val=1, max_val=1000, alternative='hop_length')
check_argument('preemphasis', c['audio'], restricted=True, val_type=float, min_val=0, max_val=1)
check_argument('min_level_db', c['audio'], restricted=True, val_type=int, min_val=-1000, max_val=10)
check_argument('ref_level_db', c['audio'], restricted=True, val_type=int, min_val=0, max_val=1000)
check_argument('power', c['audio'], restricted=True, val_type=float, min_val=1, max_val=5)
check_argument('griffin_lim_iters', c['audio'], restricted=True, val_type=int, min_val=10, max_val=1000)
# vocabulary parameters
check_argument('characters', c, restricted=False, val_type=dict)
check_argument('pad', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
check_argument('eos', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
check_argument('bos', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
check_argument('characters', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
check_argument('phonemes', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
check_argument('punctuations', c['characters'] if 'characters' in c.keys() else {}, restricted='characters' in c.keys(), val_type=str)
# normalization parameters
check_argument('signal_norm', c['audio'], restricted=True, val_type=bool)
check_argument('symmetric_norm', c['audio'], restricted=True, val_type=bool)
check_argument('max_norm', c['audio'], restricted=True, val_type=float, min_val=0.1, max_val=1000)
check_argument('clip_norm', c['audio'], restricted=True, val_type=bool)
check_argument('mel_fmin', c['audio'], restricted=True, val_type=float, min_val=0.0, max_val=1000)
check_argument('mel_fmax', c['audio'], restricted=True, val_type=float, min_val=500.0)
check_argument('spec_gain', c['audio'], restricted=True, val_type=float, min_val=1, max_val=100)
check_argument('do_trim_silence', c['audio'], restricted=True, val_type=bool)
check_argument('trim_db', c['audio'], restricted=True, val_type=int)
# training parameters
check_argument('batch_size', c, restricted=True, val_type=int, min_val=1)
check_argument('eval_batch_size', c, restricted=True, val_type=int, min_val=1)
check_argument('r', c, restricted=True, val_type=int, min_val=1)
check_argument('gradual_training', c, restricted=False, val_type=list)
check_argument('loss_masking', c, restricted=True, val_type=bool)
check_argument('apex_amp_level', c, restricted=False, val_type=str)
# check_argument('grad_accum', c, restricted=True, val_type=int, min_val=1, max_val=100)
# validation parameters
check_argument('run_eval', c, restricted=True, val_type=bool)
check_argument('test_delay_epochs', c, restricted=True, val_type=int, min_val=0)
check_argument('test_sentences_file', c, restricted=False, val_type=str)
# optimizer
check_argument('noam_schedule', c, restricted=False, val_type=bool)
check_argument('grad_clip', c, restricted=True, val_type=float, min_val=0.0)
check_argument('epochs', c, restricted=True, val_type=int, min_val=1)
check_argument('lr', c, restricted=True, val_type=float, min_val=0)
check_argument('wd', c, restricted=True, val_type=float, min_val=0)
check_argument('warmup_steps', c, restricted=True, val_type=int, min_val=0)
check_argument('seq_len_norm', c, restricted=True, val_type=bool)
# tacotron prenet
check_argument('memory_size', c, restricted=True, val_type=int, min_val=-1)
check_argument('prenet_type', c, restricted=True, val_type=str, enum_list=['original', 'bn'])
check_argument('prenet_dropout', c, restricted=True, val_type=bool)
# attention
check_argument('attention_type', c, restricted=True, val_type=str, enum_list=['graves', 'original'])
check_argument('attention_heads', c, restricted=True, val_type=int)
check_argument('attention_norm', c, restricted=True, val_type=str, enum_list=['sigmoid', 'softmax'])
check_argument('windowing', c, restricted=True, val_type=bool)
check_argument('use_forward_attn', c, restricted=True, val_type=bool)
check_argument('forward_attn_mask', c, restricted=True, val_type=bool)
check_argument('transition_agent', c, restricted=True, val_type=bool)
check_argument('transition_agent', c, restricted=True, val_type=bool)
check_argument('location_attn', c, restricted=True, val_type=bool)
check_argument('bidirectional_decoder', c, restricted=True, val_type=bool)
check_argument('double_decoder_consistency', c, restricted=True, val_type=bool)
check_argument('ddc_r', c, restricted='double_decoder_consistency' in c.keys(), min_val=1, max_val=7, val_type=int)
# stopnet
check_argument('stopnet', c, restricted=True, val_type=bool)
check_argument('separate_stopnet', c, restricted=True, val_type=bool)
# tensorboard
check_argument('print_step', c, restricted=True, val_type=int, min_val=1)
check_argument('tb_plot_step', c, restricted=True, val_type=int, min_val=1)
check_argument('save_step', c, restricted=True, val_type=int, min_val=1)
check_argument('checkpoint', c, restricted=True, val_type=bool)
check_argument('tb_model_param_stats', c, restricted=True, val_type=bool)
# dataloading
# pylint: disable=import-outside-toplevel
from TTS.tts.utils.text import cleaners
check_argument('text_cleaner', c, restricted=True, val_type=str, enum_list=dir(cleaners))
check_argument('enable_eos_bos_chars', c, restricted=True, val_type=bool)
check_argument('num_loader_workers', c, restricted=True, val_type=int, min_val=0)
check_argument('num_val_loader_workers', c, restricted=True, val_type=int, min_val=0)
check_argument('batch_group_size', c, restricted=True, val_type=int, min_val=0)
check_argument('min_seq_len', c, restricted=True, val_type=int, min_val=0)
check_argument('max_seq_len', c, restricted=True, val_type=int, min_val=10)
# paths
check_argument('output_path', c, restricted=True, val_type=str)
# multi-speaker gst
check_argument('use_speaker_embedding', c, restricted=True, val_type=bool)
check_argument('style_wav_for_test', c, restricted=True, val_type=str)
check_argument('use_gst', c, restricted=True, val_type=bool)
# datasets - checking only the first entry
check_argument('datasets', c, restricted=True, val_type=list)
for dataset_entry in c['datasets']:
check_argument('name', dataset_entry, restricted=True, val_type=str)
check_argument('path', dataset_entry, restricted=True, val_type=str)
check_argument('meta_file_train', dataset_entry, restricted=True, val_type=str)
check_argument('meta_file_val', dataset_entry, restricted=True, val_type=str)