coqui-tts/TTS/tts/layers/matcha_tts/UNet.py

299 lines
9.5 KiB
Python

import math
from einops import pack, rearrange
import torch
from torch import nn
import conformer
class PositionalEncoding(torch.nn.Module):
def __init__(self, channels):
super().__init__()
self.channels = channels
def forward(self, x, scale=1000):
if x.ndim < 1:
x = x.unsqueeze(0)
emb = math.log(10000) / (self.channels // 2 - 1)
emb = torch.exp(torch.arange(self.channels // 2, device=x.device).float() * -emb)
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
class ConvBlock1D(nn.Module):
def __init__(self, in_channels, out_channels, num_groups=8):
super().__init__()
self.block = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=1),
nn.GroupNorm(num_groups, out_channels),
nn.Mish()
)
def forward(self, x, mask=None):
if mask is not None:
x = x * mask
output = self.block(x)
if mask is not None:
output = output * mask
return output
class ResNetBlock1D(nn.Module):
def __init__(self, in_channels, out_channels, time_embed_channels, num_groups=8):
super().__init__()
self.block_1 = ConvBlock1D(in_channels, out_channels, num_groups=num_groups)
self.mlp = nn.Sequential(
nn.Mish(),
nn.Linear(time_embed_channels, out_channels)
)
self.block_2 = ConvBlock1D(in_channels=out_channels, out_channels=out_channels, num_groups=num_groups)
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size=1)
def forward(self, x, mask, t):
h = self.block_1(x, mask)
h += self.mlp(t).unsqueeze(-1)
h = self.block_2(h, mask)
output = h + self.conv(x * mask)
return output
class Downsample1D(nn.Module):
def __init__(self, channels):
super().__init__()
self.conv = nn.Conv1d(in_channels=channels, out_channels=channels, kernel_size=3, stride=2, padding=1)
def forward(self, x):
return self.conv(x)
class Upsample1D(nn.Module):
def __init__(self, channels):
super().__init__()
self.conv = nn.ConvTranspose1d(in_channels=channels, out_channels=channels, kernel_size=4, stride=2, padding=1)
def forward(self, x):
return self.conv(x)
class ConformerBlock(conformer.ConformerBlock):
def __init__(
self,
dim: int,
dim_head: int = 64,
heads: int = 8,
ff_mult: int = 4,
conv_expansion_factor: int = 2,
conv_kernel_size: int = 31,
attn_dropout: float = 0.,
ff_dropout: float = 0.,
conv_dropout: float = 0.,
conv_causal: bool = False,
):
super().__init__(
dim=dim,
dim_head=dim_head,
heads=heads,
ff_mult=ff_mult,
conv_expansion_factor=conv_expansion_factor,
conv_kernel_size=conv_kernel_size,
attn_dropout=attn_dropout,
ff_dropout=ff_dropout,
conv_dropout=conv_dropout,
conv_causal=conv_causal,
)
def forward(self, x, mask,):
x = rearrange(x, "b c t -> b t c")
mask = rearrange(mask, "b 1 t -> b t")
output = super().forward(x=x, mask=mask.bool())
return rearrange(output, "b t c -> b c t")
class UNet(nn.Module):
def __init__(
self,
in_channels: int,
model_channels: int,
out_channels: int,
num_blocks: int,
transformer_num_heads: int = 4,
transformer_dim_head: int = 64,
transformer_ff_mult: int = 1,
transformer_conv_expansion_factor: int = 2,
transformer_conv_kernel_size: int = 31,
transformer_dropout: float = 0.05,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.time_encoder = PositionalEncoding(in_channels)
time_embed_channels = model_channels * 4
self.time_embed = nn.Sequential(
nn.Linear(in_channels, time_embed_channels),
nn.SiLU(),
nn.Linear(time_embed_channels, time_embed_channels),
)
self.input_blocks = nn.ModuleList([])
block_in_channels = in_channels * 2
block_out_channels = model_channels
for level in range(num_blocks):
block = nn.ModuleList([])
block.append(
ResNetBlock1D(
in_channels=block_in_channels,
out_channels=block_out_channels,
time_embed_channels=time_embed_channels
)
)
block.append(
self._create_transformer_block(
block_out_channels,
dim_head=transformer_dim_head,
num_heads=transformer_num_heads,
ff_mult=transformer_ff_mult,
conv_expansion_factor=transformer_conv_expansion_factor,
conv_kernel_size=transformer_conv_kernel_size,
dropout=transformer_dropout,
)
)
if level != num_blocks - 1:
block.append(Downsample1D(block_out_channels))
else:
block.append(None)
block_in_channels = block_out_channels
self.input_blocks.append(block)
self.middle_blocks = nn.ModuleList([])
for i in range(2):
block = nn.ModuleList([])
block.append(
ResNetBlock1D(
in_channels=block_out_channels,
out_channels=block_out_channels,
time_embed_channels=time_embed_channels
)
)
block.append(
self._create_transformer_block(
block_out_channels,
dim_head=transformer_dim_head,
num_heads=transformer_num_heads,
ff_mult=transformer_ff_mult,
conv_expansion_factor=transformer_conv_expansion_factor,
conv_kernel_size=transformer_conv_kernel_size,
dropout=transformer_dropout,
)
)
self.middle_blocks.append(block)
self.output_blocks = nn.ModuleList([])
block_in_channels = block_out_channels * 2
block_out_channels = model_channels
for level in range(num_blocks):
block = nn.ModuleList([])
block.append(
ResNetBlock1D(
in_channels=block_in_channels,
out_channels=block_out_channels,
time_embed_channels=time_embed_channels
)
)
block.append(
self._create_transformer_block(
block_out_channels,
dim_head=transformer_dim_head,
num_heads=transformer_num_heads,
ff_mult=transformer_ff_mult,
conv_expansion_factor=transformer_conv_expansion_factor,
conv_kernel_size=transformer_conv_kernel_size,
dropout=transformer_dropout,
)
)
if level != num_blocks - 1:
block.append(Upsample1D(block_out_channels))
else:
block.append(None)
block_in_channels = block_out_channels * 2
self.output_blocks.append(block)
self.conv_block = ConvBlock1D(model_channels, model_channels)
self.conv = nn.Conv1d(model_channels, self.out_channels, 1)
def _create_transformer_block(
self,
dim,
dim_head: int = 64,
num_heads: int = 4,
ff_mult: int = 1,
conv_expansion_factor: int = 2,
conv_kernel_size: int = 31,
dropout: float = 0.05,
):
return ConformerBlock(
dim=dim,
dim_head=dim_head,
heads=num_heads,
ff_mult=ff_mult,
conv_expansion_factor=conv_expansion_factor,
conv_kernel_size=conv_kernel_size,
attn_dropout=dropout,
ff_dropout=dropout,
conv_dropout=dropout,
conv_causal=False,
)
def forward(self, x_t, mean, mask, t):
t = self.time_encoder(t)
t = self.time_embed(t)
x_t = pack([x_t, mean], "b * t")[0]
hidden_states = []
mask_states = [mask]
for block in self.input_blocks:
res_net_block, transformer, downsample = block
x_t = res_net_block(x_t, mask, t)
x_t = transformer(x_t, mask)
hidden_states.append(x_t)
if downsample is not None:
x_t = downsample(x_t * mask)
mask = mask[:, :, ::2]
mask_states.append(mask)
for block in self.middle_blocks:
res_net_block, transformer = block
mask = mask_states[-1]
x_t = res_net_block(x_t, mask, t)
x_t = transformer(x_t, mask)
for block in self.output_blocks:
res_net_block, transformer, upsample = block
x_t = pack([x_t, hidden_states.pop()], "b * t")[0]
mask = mask_states.pop()
x_t = res_net_block(x_t, mask, t)
x_t = transformer(x_t, mask)
if upsample is not None:
x_t = upsample(x_t * mask)
output = self.conv_block(x_t)
output = self.conv(x_t)
return output * mask