coqui-tts/TTS/bin/eval_encoder.py

89 lines
2.9 KiB
Python

import argparse
import os
import torch
from argparse import RawTextHelpFormatter
from tqdm import tqdm
from TTS.config import load_config
from TTS.tts.datasets import load_tts_samples
from TTS.tts.utils.speakers import SpeakerManager
parser = argparse.ArgumentParser(
description="""Compute the accuracy of the encoder.\n\n"""
"""
Example runs:
python TTS/bin/eval_encoder.py emotion_encoder_model.pth.tar emotion_encoder_config.json dataset_config.json
""",
formatter_class=RawTextHelpFormatter,
)
parser.add_argument("model_path", type=str, help="Path to model checkpoint file.")
parser.add_argument(
"config_path",
type=str,
help="Path to model config file.",
)
parser.add_argument(
"config_dataset_path",
type=str,
help="Path to dataset config file.",
)
parser.add_argument("--use_cuda", type=bool, help="flag to set cuda.", default=True)
parser.add_argument("--eval", type=bool, help="compute eval.", default=True)
args = parser.parse_args()
c_dataset = load_config(args.config_dataset_path)
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=args.eval)
wav_files = meta_data_train + meta_data_eval
speaker_manager = SpeakerManager(
encoder_model_path=args.model_path, encoder_config_path=args.config_path, use_cuda=args.use_cuda
)
if speaker_manager.speaker_encoder_config.map_classid_to_classname is not None:
map_classid_to_classname = speaker_manager.speaker_encoder_config.map_classid_to_classname
else:
map_classid_to_classname = None
# compute speaker embeddings
class_acc_dict = {}
for idx, wav_file in enumerate(tqdm(wav_files)):
if isinstance(wav_file, list):
class_name = wav_file[2]
wav_file = wav_file[1]
else:
class_name = None
# extract the embedding
embedd = speaker_manager.compute_d_vector_from_clip(wav_file)
if speaker_manager.speaker_encoder_criterion is not None and map_classid_to_classname is not None:
embedding = torch.FloatTensor(embedd).unsqueeze(0)
if args.use_cuda:
embedding = embedding.cuda()
class_id = speaker_manager.speaker_encoder_criterion.softmax.inference(embedding).item()
predicted_label = map_classid_to_classname[str(class_id)]
else:
predicted_label = None
if class_name is not None and predicted_label is not None:
is_equal = int(class_name == predicted_label)
if class_name not in class_acc_dict:
class_acc_dict[class_name] = [is_equal]
else:
class_acc_dict[class_name].append(is_equal)
else:
print("Error: class_name or/and predicted_label are None")
exit()
acc_avg = 0
for key in class_acc_dict:
acc = sum(class_acc_dict[key])/len(class_acc_dict[key])
print("Class", key, "Accuracy:", acc)
acc_avg += acc
print("Average Accuracy:", acc_avg/len(class_acc_dict))