coqui-tts/TTS/speaker_encoder/dataset.py

254 lines
9.6 KiB
Python

import random
import numpy as np
import torch
from torch.utils.data import Dataset
from TTS.speaker_encoder.utils.generic_utils import AugmentWAV, Storage
class SpeakerEncoderDataset(Dataset):
def __init__(
self,
ap,
meta_data,
voice_len=1.6,
num_speakers_in_batch=64,
storage_size=1,
sample_from_storage_p=0.5,
num_utter_per_speaker=10,
skip_speakers=False,
verbose=False,
augmentation_config=None,
):
"""
Args:
ap (TTS.tts.utils.AudioProcessor): audio processor object.
meta_data (list): list of dataset instances.
seq_len (int): voice segment length in seconds.
verbose (bool): print diagnostic information.
"""
super().__init__()
self.items = meta_data
self.sample_rate = ap.sample_rate
self.seq_len = int(voice_len * self.sample_rate)
self.num_speakers_in_batch = num_speakers_in_batch
self.num_utter_per_speaker = num_utter_per_speaker
self.skip_speakers = skip_speakers
self.ap = ap
self.verbose = verbose
self.__parse_items()
storage_max_size = storage_size * num_speakers_in_batch
self.storage = Storage(
maxsize=storage_max_size, storage_batchs=storage_size, num_speakers_in_batch=num_speakers_in_batch
)
self.sample_from_storage_p = float(sample_from_storage_p)
speakers_aux = list(self.speakers)
speakers_aux.sort()
self.speakerid_to_classid = {key: i for i, key in enumerate(speakers_aux)}
# Augmentation
self.augmentator = None
self.gaussian_augmentation_config = None
if augmentation_config:
self.data_augmentation_p = augmentation_config["p"]
if self.data_augmentation_p and ("additive" in augmentation_config or "rir" in augmentation_config):
self.augmentator = AugmentWAV(ap, augmentation_config)
if "gaussian" in augmentation_config.keys():
self.gaussian_augmentation_config = augmentation_config["gaussian"]
if self.verbose:
print("\n > DataLoader initialization")
print(f" | > Speakers per Batch: {num_speakers_in_batch}")
print(f" | > Storage Size: {storage_max_size} instances, each with {num_utter_per_speaker} utters")
print(f" | > Sample_from_storage_p : {self.sample_from_storage_p}")
print(f" | > Number of instances : {len(self.items)}")
print(f" | > Sequence length: {self.seq_len}")
print(f" | > Num speakers: {len(self.speakers)}")
def load_wav(self, filename):
audio = self.ap.load_wav(filename, sr=self.ap.sample_rate)
return audio
def load_data(self, idx):
text, wav_file, speaker_name = self.items[idx]
wav = np.asarray(self.load_wav(wav_file), dtype=np.float32)
mel = self.ap.melspectrogram(wav).astype("float32")
# sample seq_len
assert text.size > 0, self.items[idx][1]
assert wav.size > 0, self.items[idx][1]
sample = {
"mel": mel,
"item_idx": self.items[idx][1],
"speaker_name": speaker_name,
}
return sample
def __parse_items(self):
self.speaker_to_utters = {}
for i in self.items:
path_ = i[1]
speaker_ = i[2]
if speaker_ in self.speaker_to_utters.keys():
self.speaker_to_utters[speaker_].append(path_)
else:
self.speaker_to_utters[speaker_] = [
path_,
]
if self.skip_speakers:
self.speaker_to_utters = {
k: v for (k, v) in self.speaker_to_utters.items() if len(v) >= self.num_utter_per_speaker
}
self.speakers = [k for (k, v) in self.speaker_to_utters.items()]
def __len__(self):
return int(1e10)
def get_num_speakers(self):
return len(self.speakers)
def __sample_speaker(self, ignore_speakers=None):
speaker = random.sample(self.speakers, 1)[0]
# if list of speakers_id is provide make sure that it's will be ignored
if ignore_speakers and self.speakerid_to_classid[speaker] in ignore_speakers:
while True:
speaker = random.sample(self.speakers, 1)[0]
if self.speakerid_to_classid[speaker] not in ignore_speakers:
break
if self.num_utter_per_speaker > len(self.speaker_to_utters[speaker]):
utters = random.choices(self.speaker_to_utters[speaker], k=self.num_utter_per_speaker)
else:
utters = random.sample(self.speaker_to_utters[speaker], self.num_utter_per_speaker)
return speaker, utters
def __sample_speaker_utterances(self, speaker):
"""
Sample all M utterances for the given speaker.
"""
wavs = []
labels = []
for _ in range(self.num_utter_per_speaker):
# TODO:dummy but works
while True:
# remove speakers that have num_utter less than 2
if len(self.speaker_to_utters[speaker]) > 1:
utter = random.sample(self.speaker_to_utters[speaker], 1)[0]
else:
if speaker in self.speakers:
self.speakers.remove(speaker)
speaker, _ = self.__sample_speaker()
continue
wav = self.load_wav(utter)
if wav.shape[0] - self.seq_len > 0:
break
if utter in self.speaker_to_utters[speaker]:
self.speaker_to_utters[speaker].remove(utter)
if self.augmentator is not None and self.data_augmentation_p:
if random.random() < self.data_augmentation_p:
wav = self.augmentator.apply_one(wav)
wavs.append(wav)
labels.append(self.speakerid_to_classid[speaker])
return wavs, labels
def __getitem__(self, idx):
speaker, _ = self.__sample_speaker()
speaker_id = self.speakerid_to_classid[speaker]
return speaker, speaker_id
def __load_from_disk_and_storage(self, speaker):
# don't sample from storage, but from HDD
wavs_, labels_ = self.__sample_speaker_utterances(speaker)
# put the newly loaded item into storage
self.storage.append((wavs_, labels_))
return wavs_, labels_
def collate_fn(self, batch):
# get the batch speaker_ids
batch = np.array(batch)
speakers_id_in_batch = set(batch[:, 1].astype(np.int32))
labels = []
feats = []
speakers = set()
for speaker, speaker_id in batch:
speaker_id = int(speaker_id)
# ensure that an speaker appears only once in the batch
if speaker_id in speakers:
# remove current speaker
if speaker_id in speakers_id_in_batch:
speakers_id_in_batch.remove(speaker_id)
speaker, _ = self.__sample_speaker(ignore_speakers=speakers_id_in_batch)
speaker_id = self.speakerid_to_classid[speaker]
speakers_id_in_batch.add(speaker_id)
if random.random() < self.sample_from_storage_p and self.storage.full():
# sample from storage (if full)
wavs_, labels_ = self.storage.get_random_sample_fast()
# force choose the current speaker or other not in batch
# It's necessary for ideal training with AngleProto and GE2E losses
if labels_[0] in speakers_id_in_batch and labels_[0] != speaker_id:
attempts = 0
while True:
wavs_, labels_ = self.storage.get_random_sample_fast()
if labels_[0] == speaker_id or labels_[0] not in speakers_id_in_batch:
break
attempts += 1
# Try 5 times after that load from disk
if attempts >= 5:
wavs_, labels_ = self.__load_from_disk_and_storage(speaker)
break
else:
# don't sample from storage, but from HDD
wavs_, labels_ = self.__load_from_disk_and_storage(speaker)
# append speaker for control
speakers.add(labels_[0])
# remove current speaker and append other
if speaker_id in speakers_id_in_batch:
speakers_id_in_batch.remove(speaker_id)
speakers_id_in_batch.add(labels_[0])
# get a random subset of each of the wavs and extract mel spectrograms.
feats_ = []
for wav in wavs_:
offset = random.randint(0, wav.shape[0] - self.seq_len)
wav = wav[offset : offset + self.seq_len]
# add random gaussian noise
if self.gaussian_augmentation_config and self.gaussian_augmentation_config["p"]:
if random.random() < self.gaussian_augmentation_config["p"]:
wav += np.random.normal(
self.gaussian_augmentation_config["min_amplitude"],
self.gaussian_augmentation_config["max_amplitude"],
size=len(wav),
)
mel = self.ap.melspectrogram(wav)
feats_.append(torch.FloatTensor(mel))
labels.append(torch.LongTensor(labels_))
feats.extend(feats_)
feats = torch.stack(feats)
labels = torch.stack(labels)
return feats, labels