mirror of https://github.com/coqui-ai/TTS.git
254 lines
9.6 KiB
Python
254 lines
9.6 KiB
Python
import random
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.data import Dataset
|
|
|
|
from TTS.speaker_encoder.utils.generic_utils import AugmentWAV, Storage
|
|
|
|
|
|
class SpeakerEncoderDataset(Dataset):
|
|
def __init__(
|
|
self,
|
|
ap,
|
|
meta_data,
|
|
voice_len=1.6,
|
|
num_speakers_in_batch=64,
|
|
storage_size=1,
|
|
sample_from_storage_p=0.5,
|
|
num_utter_per_speaker=10,
|
|
skip_speakers=False,
|
|
verbose=False,
|
|
augmentation_config=None,
|
|
):
|
|
"""
|
|
Args:
|
|
ap (TTS.tts.utils.AudioProcessor): audio processor object.
|
|
meta_data (list): list of dataset instances.
|
|
seq_len (int): voice segment length in seconds.
|
|
verbose (bool): print diagnostic information.
|
|
"""
|
|
super().__init__()
|
|
self.items = meta_data
|
|
self.sample_rate = ap.sample_rate
|
|
self.seq_len = int(voice_len * self.sample_rate)
|
|
self.num_speakers_in_batch = num_speakers_in_batch
|
|
self.num_utter_per_speaker = num_utter_per_speaker
|
|
self.skip_speakers = skip_speakers
|
|
self.ap = ap
|
|
self.verbose = verbose
|
|
self.__parse_items()
|
|
storage_max_size = storage_size * num_speakers_in_batch
|
|
self.storage = Storage(
|
|
maxsize=storage_max_size, storage_batchs=storage_size, num_speakers_in_batch=num_speakers_in_batch
|
|
)
|
|
self.sample_from_storage_p = float(sample_from_storage_p)
|
|
|
|
speakers_aux = list(self.speakers)
|
|
speakers_aux.sort()
|
|
self.speakerid_to_classid = {key: i for i, key in enumerate(speakers_aux)}
|
|
|
|
# Augmentation
|
|
self.augmentator = None
|
|
self.gaussian_augmentation_config = None
|
|
if augmentation_config:
|
|
self.data_augmentation_p = augmentation_config["p"]
|
|
if self.data_augmentation_p and ("additive" in augmentation_config or "rir" in augmentation_config):
|
|
self.augmentator = AugmentWAV(ap, augmentation_config)
|
|
|
|
if "gaussian" in augmentation_config.keys():
|
|
self.gaussian_augmentation_config = augmentation_config["gaussian"]
|
|
|
|
if self.verbose:
|
|
print("\n > DataLoader initialization")
|
|
print(f" | > Speakers per Batch: {num_speakers_in_batch}")
|
|
print(f" | > Storage Size: {storage_max_size} instances, each with {num_utter_per_speaker} utters")
|
|
print(f" | > Sample_from_storage_p : {self.sample_from_storage_p}")
|
|
print(f" | > Number of instances : {len(self.items)}")
|
|
print(f" | > Sequence length: {self.seq_len}")
|
|
print(f" | > Num speakers: {len(self.speakers)}")
|
|
|
|
def load_wav(self, filename):
|
|
audio = self.ap.load_wav(filename, sr=self.ap.sample_rate)
|
|
return audio
|
|
|
|
def load_data(self, idx):
|
|
text, wav_file, speaker_name = self.items[idx]
|
|
wav = np.asarray(self.load_wav(wav_file), dtype=np.float32)
|
|
mel = self.ap.melspectrogram(wav).astype("float32")
|
|
# sample seq_len
|
|
|
|
assert text.size > 0, self.items[idx][1]
|
|
assert wav.size > 0, self.items[idx][1]
|
|
|
|
sample = {
|
|
"mel": mel,
|
|
"item_idx": self.items[idx][1],
|
|
"speaker_name": speaker_name,
|
|
}
|
|
return sample
|
|
|
|
def __parse_items(self):
|
|
self.speaker_to_utters = {}
|
|
for i in self.items:
|
|
path_ = i[1]
|
|
speaker_ = i[2]
|
|
if speaker_ in self.speaker_to_utters.keys():
|
|
self.speaker_to_utters[speaker_].append(path_)
|
|
else:
|
|
self.speaker_to_utters[speaker_] = [
|
|
path_,
|
|
]
|
|
|
|
if self.skip_speakers:
|
|
self.speaker_to_utters = {
|
|
k: v for (k, v) in self.speaker_to_utters.items() if len(v) >= self.num_utter_per_speaker
|
|
}
|
|
|
|
self.speakers = [k for (k, v) in self.speaker_to_utters.items()]
|
|
|
|
def __len__(self):
|
|
return int(1e10)
|
|
|
|
def get_num_speakers(self):
|
|
return len(self.speakers)
|
|
|
|
def __sample_speaker(self, ignore_speakers=None):
|
|
speaker = random.sample(self.speakers, 1)[0]
|
|
# if list of speakers_id is provide make sure that it's will be ignored
|
|
if ignore_speakers and self.speakerid_to_classid[speaker] in ignore_speakers:
|
|
while True:
|
|
speaker = random.sample(self.speakers, 1)[0]
|
|
if self.speakerid_to_classid[speaker] not in ignore_speakers:
|
|
break
|
|
|
|
if self.num_utter_per_speaker > len(self.speaker_to_utters[speaker]):
|
|
utters = random.choices(self.speaker_to_utters[speaker], k=self.num_utter_per_speaker)
|
|
else:
|
|
utters = random.sample(self.speaker_to_utters[speaker], self.num_utter_per_speaker)
|
|
return speaker, utters
|
|
|
|
def __sample_speaker_utterances(self, speaker):
|
|
"""
|
|
Sample all M utterances for the given speaker.
|
|
"""
|
|
wavs = []
|
|
labels = []
|
|
for _ in range(self.num_utter_per_speaker):
|
|
# TODO:dummy but works
|
|
while True:
|
|
# remove speakers that have num_utter less than 2
|
|
if len(self.speaker_to_utters[speaker]) > 1:
|
|
utter = random.sample(self.speaker_to_utters[speaker], 1)[0]
|
|
else:
|
|
if speaker in self.speakers:
|
|
self.speakers.remove(speaker)
|
|
|
|
speaker, _ = self.__sample_speaker()
|
|
continue
|
|
|
|
wav = self.load_wav(utter)
|
|
if wav.shape[0] - self.seq_len > 0:
|
|
break
|
|
|
|
if utter in self.speaker_to_utters[speaker]:
|
|
self.speaker_to_utters[speaker].remove(utter)
|
|
|
|
if self.augmentator is not None and self.data_augmentation_p:
|
|
if random.random() < self.data_augmentation_p:
|
|
wav = self.augmentator.apply_one(wav)
|
|
|
|
wavs.append(wav)
|
|
labels.append(self.speakerid_to_classid[speaker])
|
|
return wavs, labels
|
|
|
|
def __getitem__(self, idx):
|
|
speaker, _ = self.__sample_speaker()
|
|
speaker_id = self.speakerid_to_classid[speaker]
|
|
return speaker, speaker_id
|
|
|
|
def __load_from_disk_and_storage(self, speaker):
|
|
# don't sample from storage, but from HDD
|
|
wavs_, labels_ = self.__sample_speaker_utterances(speaker)
|
|
# put the newly loaded item into storage
|
|
self.storage.append((wavs_, labels_))
|
|
return wavs_, labels_
|
|
|
|
def collate_fn(self, batch):
|
|
# get the batch speaker_ids
|
|
batch = np.array(batch)
|
|
speakers_id_in_batch = set(batch[:, 1].astype(np.int32))
|
|
|
|
labels = []
|
|
feats = []
|
|
speakers = set()
|
|
|
|
for speaker, speaker_id in batch:
|
|
speaker_id = int(speaker_id)
|
|
|
|
# ensure that an speaker appears only once in the batch
|
|
if speaker_id in speakers:
|
|
|
|
# remove current speaker
|
|
if speaker_id in speakers_id_in_batch:
|
|
speakers_id_in_batch.remove(speaker_id)
|
|
|
|
speaker, _ = self.__sample_speaker(ignore_speakers=speakers_id_in_batch)
|
|
speaker_id = self.speakerid_to_classid[speaker]
|
|
speakers_id_in_batch.add(speaker_id)
|
|
|
|
if random.random() < self.sample_from_storage_p and self.storage.full():
|
|
# sample from storage (if full)
|
|
wavs_, labels_ = self.storage.get_random_sample_fast()
|
|
|
|
# force choose the current speaker or other not in batch
|
|
# It's necessary for ideal training with AngleProto and GE2E losses
|
|
if labels_[0] in speakers_id_in_batch and labels_[0] != speaker_id:
|
|
attempts = 0
|
|
while True:
|
|
wavs_, labels_ = self.storage.get_random_sample_fast()
|
|
if labels_[0] == speaker_id or labels_[0] not in speakers_id_in_batch:
|
|
break
|
|
|
|
attempts += 1
|
|
# Try 5 times after that load from disk
|
|
if attempts >= 5:
|
|
wavs_, labels_ = self.__load_from_disk_and_storage(speaker)
|
|
break
|
|
else:
|
|
# don't sample from storage, but from HDD
|
|
wavs_, labels_ = self.__load_from_disk_and_storage(speaker)
|
|
|
|
# append speaker for control
|
|
speakers.add(labels_[0])
|
|
|
|
# remove current speaker and append other
|
|
if speaker_id in speakers_id_in_batch:
|
|
speakers_id_in_batch.remove(speaker_id)
|
|
|
|
speakers_id_in_batch.add(labels_[0])
|
|
|
|
# get a random subset of each of the wavs and extract mel spectrograms.
|
|
feats_ = []
|
|
for wav in wavs_:
|
|
offset = random.randint(0, wav.shape[0] - self.seq_len)
|
|
wav = wav[offset : offset + self.seq_len]
|
|
# add random gaussian noise
|
|
if self.gaussian_augmentation_config and self.gaussian_augmentation_config["p"]:
|
|
if random.random() < self.gaussian_augmentation_config["p"]:
|
|
wav += np.random.normal(
|
|
self.gaussian_augmentation_config["min_amplitude"],
|
|
self.gaussian_augmentation_config["max_amplitude"],
|
|
size=len(wav),
|
|
)
|
|
mel = self.ap.melspectrogram(wav)
|
|
feats_.append(torch.FloatTensor(mel))
|
|
|
|
labels.append(torch.LongTensor(labels_))
|
|
feats.extend(feats_)
|
|
|
|
feats = torch.stack(feats)
|
|
labels = torch.stack(labels)
|
|
|
|
return feats, labels
|