coqui-tts/TTS/vocoder/utils/generic_utils.py

191 lines
6.4 KiB
Python

import re
import importlib
import numpy as np
from matplotlib import pyplot as plt
from TTS.tts.utils.visual import plot_spectrogram
def plot_results(y_hat, y, ap, global_step, name_prefix):
""" Plot vocoder model results """
# select an instance from batch
y_hat = y_hat[0].squeeze(0).detach().cpu().numpy()
y = y[0].squeeze(0).detach().cpu().numpy()
spec_fake = ap.melspectrogram(y_hat).T
spec_real = ap.melspectrogram(y).T
spec_diff = np.abs(spec_fake - spec_real)
# plot figure and save it
fig_wave = plt.figure()
plt.subplot(2, 1, 1)
plt.plot(y)
plt.title("groundtruth speech")
plt.subplot(2, 1, 2)
plt.plot(y_hat)
plt.title(f"generated speech @ {global_step} steps")
plt.tight_layout()
plt.close()
figures = {
name_prefix + "spectrogram/fake": plot_spectrogram(spec_fake),
name_prefix + "spectrogram/real": plot_spectrogram(spec_real),
name_prefix + "spectrogram/diff": plot_spectrogram(spec_diff),
name_prefix + "speech_comparison": fig_wave,
}
return figures
def to_camel(text):
text = text.capitalize()
return re.sub(r"(?!^)_([a-zA-Z])", lambda m: m.group(1).upper(), text)
def setup_wavernn(c):
print(" > Model: WaveRNN")
MyModel = importlib.import_module("TTS.vocoder.models.wavernn")
MyModel = getattr(MyModel, "WaveRNN")
model = MyModel(
rnn_dims=512,
fc_dims=512,
mode=c.mode,
mulaw=c.mulaw,
pad=c.padding,
use_aux_net=c.use_aux_net,
use_upsample_net=c.use_upsample_net,
upsample_factors=c.upsample_factors,
feat_dims=80,
compute_dims=128,
res_out_dims=128,
res_blocks=10,
hop_length=c.audio["hop_length"],
sample_rate=c.audio["sample_rate"],
)
return model
def setup_generator(c):
print(" > Generator Model: {}".format(c.generator_model))
MyModel = importlib.import_module("TTS.vocoder.models." + c.generator_model.lower())
MyModel = getattr(MyModel, to_camel(c.generator_model))
if c.generator_model in "melgan_generator":
model = MyModel(
in_channels=c.audio["num_mels"],
out_channels=1,
proj_kernel=7,
base_channels=512,
upsample_factors=c.generator_model_params["upsample_factors"],
res_kernel=3,
num_res_blocks=c.generator_model_params["num_res_blocks"],
)
if c.generator_model in "melgan_fb_generator":
pass
if c.generator_model in "multiband_melgan_generator":
model = MyModel(
in_channels=c.audio["num_mels"],
out_channels=4,
proj_kernel=7,
base_channels=384,
upsample_factors=c.generator_model_params["upsample_factors"],
res_kernel=3,
num_res_blocks=c.generator_model_params["num_res_blocks"],
)
if c.generator_model in "fullband_melgan_generator":
model = MyModel(
in_channels=c.audio["num_mels"],
out_channels=1,
proj_kernel=7,
base_channels=512,
upsample_factors=c.generator_model_params["upsample_factors"],
res_kernel=3,
num_res_blocks=c.generator_model_params["num_res_blocks"],
)
if c.generator_model in "parallel_wavegan_generator":
model = MyModel(
in_channels=1,
out_channels=1,
kernel_size=3,
num_res_blocks=c.generator_model_params["num_res_blocks"],
stacks=c.generator_model_params["stacks"],
res_channels=64,
gate_channels=128,
skip_channels=64,
aux_channels=c.audio["num_mels"],
dropout=0.0,
bias=True,
use_weight_norm=True,
upsample_factors=c.generator_model_params["upsample_factors"],
)
return model
def setup_discriminator(c):
print(" > Discriminator Model: {}".format(c.discriminator_model))
if "parallel_wavegan" in c.discriminator_model:
MyModel = importlib.import_module(
"TTS.vocoder.models.parallel_wavegan_discriminator"
)
else:
MyModel = importlib.import_module(
"TTS.vocoder.models." + c.discriminator_model.lower()
)
MyModel = getattr(MyModel, to_camel(c.discriminator_model.lower()))
if c.discriminator_model in "random_window_discriminator":
model = MyModel(
cond_channels=c.audio["num_mels"],
hop_length=c.audio["hop_length"],
uncond_disc_donwsample_factors=c.discriminator_model_params[
"uncond_disc_donwsample_factors"
],
cond_disc_downsample_factors=c.discriminator_model_params[
"cond_disc_downsample_factors"
],
cond_disc_out_channels=c.discriminator_model_params[
"cond_disc_out_channels"
],
window_sizes=c.discriminator_model_params["window_sizes"],
)
if c.discriminator_model in "melgan_multiscale_discriminator":
model = MyModel(
in_channels=1,
out_channels=1,
kernel_sizes=(5, 3),
base_channels=c.discriminator_model_params["base_channels"],
max_channels=c.discriminator_model_params["max_channels"],
downsample_factors=c.discriminator_model_params["downsample_factors"],
)
if c.discriminator_model == "residual_parallel_wavegan_discriminator":
model = MyModel(
in_channels=1,
out_channels=1,
kernel_size=3,
num_layers=c.discriminator_model_params["num_layers"],
stacks=c.discriminator_model_params["stacks"],
res_channels=64,
gate_channels=128,
skip_channels=64,
dropout=0.0,
bias=True,
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.2},
)
if c.discriminator_model == "parallel_wavegan_discriminator":
model = MyModel(
in_channels=1,
out_channels=1,
kernel_size=3,
num_layers=c.discriminator_model_params["num_layers"],
conv_channels=64,
dilation_factor=1,
nonlinear_activation="LeakyReLU",
nonlinear_activation_params={"negative_slope": 0.2},
bias=True,
)
return model
# def check_config(c):
# c = None
# pass