mirror of https://github.com/coqui-ai/TTS.git
202 lines
6.4 KiB
Python
202 lines
6.4 KiB
Python
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
|
|
from coqpit import Coqpit
|
|
|
|
from TTS.vc.configs.shared_configs import BaseVCConfig
|
|
|
|
|
|
@dataclass
|
|
class OpenVoiceAudioConfig(Coqpit):
|
|
"""Audio configuration
|
|
|
|
Args:
|
|
input_sample_rate (int):
|
|
The sampling rate of the input waveform.
|
|
|
|
output_sample_rate (int):
|
|
The sampling rate of the output waveform.
|
|
|
|
fft_size (int):
|
|
The length of the filter.
|
|
|
|
hop_length (int):
|
|
The hop length.
|
|
|
|
win_length (int):
|
|
The window length.
|
|
"""
|
|
|
|
input_sample_rate: int = field(default=22050)
|
|
output_sample_rate: int = field(default=22050)
|
|
fft_size: int = field(default=1024)
|
|
hop_length: int = field(default=256)
|
|
win_length: int = field(default=1024)
|
|
|
|
|
|
@dataclass
|
|
class OpenVoiceArgs(Coqpit):
|
|
"""OpenVoice model arguments.
|
|
|
|
zero_g (bool):
|
|
Whether to zero the gradients.
|
|
|
|
inter_channels (int):
|
|
The number of channels in the intermediate layers.
|
|
|
|
hidden_channels (int):
|
|
The number of channels in the hidden layers.
|
|
|
|
filter_channels (int):
|
|
The number of channels in the filter layers.
|
|
|
|
n_heads (int):
|
|
The number of attention heads.
|
|
|
|
n_layers (int):
|
|
The number of layers.
|
|
|
|
kernel_size (int):
|
|
The size of the kernel.
|
|
|
|
p_dropout (float):
|
|
The dropout probability.
|
|
|
|
resblock (str):
|
|
The type of residual block.
|
|
|
|
resblock_kernel_sizes (List[int]):
|
|
The kernel sizes for the residual blocks.
|
|
|
|
resblock_dilation_sizes (List[List[int]]):
|
|
The dilation sizes for the residual blocks.
|
|
|
|
upsample_rates (List[int]):
|
|
The upsample rates.
|
|
|
|
upsample_initial_channel (int):
|
|
The number of channels in the initial upsample layer.
|
|
|
|
upsample_kernel_sizes (List[int]):
|
|
The kernel sizes for the upsample layers.
|
|
|
|
n_layers_q (int):
|
|
The number of layers in the quantization network.
|
|
|
|
use_spectral_norm (bool):
|
|
Whether to use spectral normalization.
|
|
|
|
gin_channels (int):
|
|
The number of channels in the global conditioning vector.
|
|
|
|
tau (float):
|
|
Tau parameter for the posterior encoder
|
|
"""
|
|
|
|
zero_g: bool = field(default=True)
|
|
inter_channels: int = field(default=192)
|
|
hidden_channels: int = field(default=192)
|
|
filter_channels: int = field(default=768)
|
|
n_heads: int = field(default=2)
|
|
n_layers: int = field(default=6)
|
|
kernel_size: int = field(default=3)
|
|
p_dropout: float = field(default=0.1)
|
|
resblock: str = field(default="1")
|
|
resblock_kernel_sizes: list[int] = field(default_factory=lambda: [3, 7, 11])
|
|
resblock_dilation_sizes: list[list[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
|
|
upsample_rates: list[int] = field(default_factory=lambda: [8, 8, 2, 2])
|
|
upsample_initial_channel: int = field(default=512)
|
|
upsample_kernel_sizes: list[int] = field(default_factory=lambda: [16, 16, 4, 4])
|
|
n_layers_q: int = field(default=3)
|
|
use_spectral_norm: bool = field(default=False)
|
|
gin_channels: int = field(default=256)
|
|
tau: float = field(default=0.3)
|
|
|
|
|
|
@dataclass
|
|
class OpenVoiceConfig(BaseVCConfig):
|
|
"""Defines parameters for OpenVoice VC model.
|
|
|
|
Args:
|
|
model (str):
|
|
Model name. Do not change unless you know what you are doing.
|
|
|
|
model_args (OpenVoiceArgs):
|
|
Model architecture arguments. Defaults to `OpenVoiceArgs()`.
|
|
|
|
audio (OpenVoiceAudioConfig):
|
|
Audio processing configuration. Defaults to `OpenVoiceAudioConfig()`.
|
|
|
|
return_wav (bool):
|
|
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`.
|
|
|
|
compute_linear_spec (bool):
|
|
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`.
|
|
|
|
use_weighted_sampler (bool):
|
|
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`.
|
|
|
|
weighted_sampler_attrs (dict):
|
|
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities
|
|
by overweighting `root_path` by 2.0. Defaults to `{}`.
|
|
|
|
weighted_sampler_multipliers (dict):
|
|
Weight each unique value of a key returned by the formatter for weighted sampling.
|
|
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`.
|
|
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`.
|
|
|
|
r (int):
|
|
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`.
|
|
|
|
add_blank (bool):
|
|
If true, a blank token is added in between every character. Defaults to `True`.
|
|
|
|
Note:
|
|
Check :class:`TTS.tts.configs.shared_configs.BaseVCConfig` for the inherited parameters.
|
|
|
|
Example:
|
|
|
|
>>> from TTS.vc.configs.openvoice_config import OpenVoiceConfig
|
|
>>> config = OpenVoiceConfig()
|
|
"""
|
|
|
|
model: str = "openvoice"
|
|
# model specific params
|
|
model_args: OpenVoiceArgs = field(default_factory=OpenVoiceArgs)
|
|
audio: OpenVoiceAudioConfig = field(default_factory=OpenVoiceAudioConfig)
|
|
|
|
# optimizer
|
|
# TODO with training support
|
|
|
|
# loss params
|
|
# TODO with training support
|
|
|
|
# data loader params
|
|
return_wav: bool = True
|
|
compute_linear_spec: bool = True
|
|
|
|
# sampler params
|
|
use_weighted_sampler: bool = False # TODO: move it to the base config
|
|
weighted_sampler_attrs: dict = field(default_factory=lambda: {})
|
|
weighted_sampler_multipliers: dict = field(default_factory=lambda: {})
|
|
|
|
# overrides
|
|
r: int = 1 # DO NOT CHANGE
|
|
add_blank: bool = True
|
|
|
|
# multi-speaker settings
|
|
# use speaker embedding layer
|
|
num_speakers: int = 0
|
|
speakers_file: Optional[str] = None
|
|
speaker_embedding_channels: int = 256
|
|
|
|
# use d-vectors
|
|
use_d_vector_file: bool = False
|
|
d_vector_file: Optional[list[str]] = None
|
|
d_vector_dim: Optional[int] = None
|
|
|
|
def __post_init__(self) -> None:
|
|
for key, val in self.model_args.items():
|
|
if hasattr(self, key):
|
|
self[key] = val
|