coqui-tts/TTS/vc/configs/openvoice_config.py

202 lines
6.4 KiB
Python

from dataclasses import dataclass, field
from typing import Optional
from coqpit import Coqpit
from TTS.vc.configs.shared_configs import BaseVCConfig
@dataclass
class OpenVoiceAudioConfig(Coqpit):
"""Audio configuration
Args:
input_sample_rate (int):
The sampling rate of the input waveform.
output_sample_rate (int):
The sampling rate of the output waveform.
fft_size (int):
The length of the filter.
hop_length (int):
The hop length.
win_length (int):
The window length.
"""
input_sample_rate: int = field(default=22050)
output_sample_rate: int = field(default=22050)
fft_size: int = field(default=1024)
hop_length: int = field(default=256)
win_length: int = field(default=1024)
@dataclass
class OpenVoiceArgs(Coqpit):
"""OpenVoice model arguments.
zero_g (bool):
Whether to zero the gradients.
inter_channels (int):
The number of channels in the intermediate layers.
hidden_channels (int):
The number of channels in the hidden layers.
filter_channels (int):
The number of channels in the filter layers.
n_heads (int):
The number of attention heads.
n_layers (int):
The number of layers.
kernel_size (int):
The size of the kernel.
p_dropout (float):
The dropout probability.
resblock (str):
The type of residual block.
resblock_kernel_sizes (List[int]):
The kernel sizes for the residual blocks.
resblock_dilation_sizes (List[List[int]]):
The dilation sizes for the residual blocks.
upsample_rates (List[int]):
The upsample rates.
upsample_initial_channel (int):
The number of channels in the initial upsample layer.
upsample_kernel_sizes (List[int]):
The kernel sizes for the upsample layers.
n_layers_q (int):
The number of layers in the quantization network.
use_spectral_norm (bool):
Whether to use spectral normalization.
gin_channels (int):
The number of channels in the global conditioning vector.
tau (float):
Tau parameter for the posterior encoder
"""
zero_g: bool = field(default=True)
inter_channels: int = field(default=192)
hidden_channels: int = field(default=192)
filter_channels: int = field(default=768)
n_heads: int = field(default=2)
n_layers: int = field(default=6)
kernel_size: int = field(default=3)
p_dropout: float = field(default=0.1)
resblock: str = field(default="1")
resblock_kernel_sizes: list[int] = field(default_factory=lambda: [3, 7, 11])
resblock_dilation_sizes: list[list[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
upsample_rates: list[int] = field(default_factory=lambda: [8, 8, 2, 2])
upsample_initial_channel: int = field(default=512)
upsample_kernel_sizes: list[int] = field(default_factory=lambda: [16, 16, 4, 4])
n_layers_q: int = field(default=3)
use_spectral_norm: bool = field(default=False)
gin_channels: int = field(default=256)
tau: float = field(default=0.3)
@dataclass
class OpenVoiceConfig(BaseVCConfig):
"""Defines parameters for OpenVoice VC model.
Args:
model (str):
Model name. Do not change unless you know what you are doing.
model_args (OpenVoiceArgs):
Model architecture arguments. Defaults to `OpenVoiceArgs()`.
audio (OpenVoiceAudioConfig):
Audio processing configuration. Defaults to `OpenVoiceAudioConfig()`.
return_wav (bool):
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`.
compute_linear_spec (bool):
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`.
use_weighted_sampler (bool):
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`.
weighted_sampler_attrs (dict):
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities
by overweighting `root_path` by 2.0. Defaults to `{}`.
weighted_sampler_multipliers (dict):
Weight each unique value of a key returned by the formatter for weighted sampling.
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`.
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`.
r (int):
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`.
add_blank (bool):
If true, a blank token is added in between every character. Defaults to `True`.
Note:
Check :class:`TTS.tts.configs.shared_configs.BaseVCConfig` for the inherited parameters.
Example:
>>> from TTS.vc.configs.openvoice_config import OpenVoiceConfig
>>> config = OpenVoiceConfig()
"""
model: str = "openvoice"
# model specific params
model_args: OpenVoiceArgs = field(default_factory=OpenVoiceArgs)
audio: OpenVoiceAudioConfig = field(default_factory=OpenVoiceAudioConfig)
# optimizer
# TODO with training support
# loss params
# TODO with training support
# data loader params
return_wav: bool = True
compute_linear_spec: bool = True
# sampler params
use_weighted_sampler: bool = False # TODO: move it to the base config
weighted_sampler_attrs: dict = field(default_factory=lambda: {})
weighted_sampler_multipliers: dict = field(default_factory=lambda: {})
# overrides
r: int = 1 # DO NOT CHANGE
add_blank: bool = True
# multi-speaker settings
# use speaker embedding layer
num_speakers: int = 0
speakers_file: Optional[str] = None
speaker_embedding_channels: int = 256
# use d-vectors
use_d_vector_file: bool = False
d_vector_file: Optional[list[str]] = None
d_vector_dim: Optional[int] = None
def __post_init__(self) -> None:
for key, val in self.model_args.items():
if hasattr(self, key):
self[key] = val