coqui-tts/TTS/tts/layers/generic/classifier.py

63 lines
2.4 KiB
Python

import torch
from torch import nn
# pylint: disable=W0223
class GradientReversalFunction(torch.autograd.Function):
"""Revert gradient without any further input modification.
Adapted from: https://github.com/Tomiinek/Multilingual_Text_to_Speech/"""
@staticmethod
def forward(ctx, x, l, c):
ctx.l = l
ctx.c = c
return x.view_as(x)
@staticmethod
def backward(ctx, grad_output):
grad_output = grad_output.clamp(-ctx.c, ctx.c)
return ctx.l * grad_output.neg(), None, None
class ReversalClassifier(nn.Module):
"""Adversarial classifier with a gradient reversal layer.
Adapted from: https://github.com/Tomiinek/Multilingual_Text_to_Speech/
Args:
in_channels (int): Number of input tensor channels.
out_channels (int): Number of output tensor channels (Number of classes).
hidden_channels (int): Number of hidden channels.
gradient_clipping_bound (float): Maximal value of the gradient which flows from this module. Default: 0.25
scale_factor (float): Scale multiplier of the reversed gradientts. Default: 1.0
"""
def __init__(self, in_channels, out_channels, hidden_channels, gradient_clipping_bounds=0.25, scale_factor=1.0):
super().__init__()
self._lambda = scale_factor
self._clipping = gradient_clipping_bounds
self._out_channels = out_channels
self._classifier = nn.Sequential(
nn.Linear(in_channels, hidden_channels), nn.ReLU(), nn.Linear(hidden_channels, out_channels)
)
self.test = nn.Linear(in_channels, hidden_channels)
def forward(self, x, labels, x_mask=None):
x = GradientReversalFunction.apply(x, self._lambda, self._clipping)
x = self._classifier(x)
loss = self.loss(labels, x, x_mask)
return x, loss
@staticmethod
def loss(labels, predictions, x_mask):
ignore_index = -100
if x_mask is None:
x_mask = torch.Tensor([predictions.size(1)]).repeat(predictions.size(0)).int().to(predictions.device)
ml = torch.max(x_mask)
input_mask = torch.arange(ml, device=predictions.device)[None, :] < x_mask[:, None]
target = labels.repeat(ml.int().item(), 1).transpose(0, 1)
target[~input_mask] = ignore_index
return nn.functional.cross_entropy(predictions.transpose(1, 2), target, ignore_index=ignore_index)