coqui-tts/tests/layers_tests.py

86 lines
2.9 KiB
Python

import unittest
import torch as T
from TTS.layers.tacotron import Prenet, CBHG, Decoder, Encoder
from TTS.layers.losses import L1LossMasked, _sequence_mask
class PrenetTests(unittest.TestCase):
def test_in_out(self):
layer = Prenet(128, out_features=[256, 128])
dummy_input = T.autograd.Variable(T.rand(4, 128))
print(layer)
output = layer(dummy_input)
assert output.shape[0] == 4
assert output.shape[1] == 128
class CBHGTests(unittest.TestCase):
def test_in_out(self):
layer = CBHG(128, K=6, projections=[128, 128], num_highways=2)
dummy_input = T.autograd.Variable(T.rand(4, 8, 128))
print(layer)
output = layer(dummy_input)
assert output.shape[0] == 4
assert output.shape[1] == 8
assert output.shape[2] == 256
class DecoderTests(unittest.TestCase):
def test_in_out(self):
layer = Decoder(in_features=256, memory_dim=80, r=2)
dummy_input = T.autograd.Variable(T.rand(4, 8, 256))
dummy_memory = T.autograd.Variable(T.rand(4, 2, 80))
output, alignment = layer(dummy_input, dummy_memory)
assert output.shape[0] == 4
assert output.shape[1] == 1, "size not {}".format(output.shape[1])
assert output.shape[2] == 80 * 2, "size not {}".format(output.shape[2])
class EncoderTests(unittest.TestCase):
def test_in_out(self):
layer = Encoder(128)
dummy_input = T.autograd.Variable(T.rand(4, 8, 128))
print(layer)
output = layer(dummy_input)
print(output.shape)
assert output.shape[0] == 4
assert output.shape[1] == 8
assert output.shape[2] == 256 # 128 * 2 BiRNN
class L1LossMaskedTests(unittest.TestCase):
def test_in_out(self):
layer = L1LossMasked()
dummy_input = T.autograd.Variable(T.ones(4, 8, 128).float())
dummy_target = T.autograd.Variable(T.ones(4, 8, 128).float())
dummy_length = T.autograd.Variable((T.ones(4) * 8).long())
output = layer(dummy_input, dummy_target, dummy_length)
assert output.shape[0] == 0
assert len(output.shape) == 1
assert output.data[0] == 0.0
dummy_input = T.autograd.Variable(T.ones(4, 8, 128).float())
dummy_target = T.autograd.Variable(T.zeros(4, 8, 128).float())
dummy_length = T.autograd.Variable((T.ones(4) * 8).long())
output = layer(dummy_input, dummy_target, dummy_length)
assert output.data[0] == 1.0, "1.0 vs {}".format(output.data[0])
dummy_input = T.autograd.Variable(T.ones(4, 8, 128).float())
dummy_target = T.autograd.Variable(T.zeros(4, 8, 128).float())
dummy_length = T.autograd.Variable((T.arange(5, 9)).long())
mask = ((_sequence_mask(dummy_length).float() - 1.0)
* 100.0).unsqueeze(2)
output = layer(dummy_input + mask, dummy_target, dummy_length)
assert output.data[0] == 1.0, "1.0 vs {}".format(output.data[0])