mirror of https://github.com/coqui-ai/TTS.git
100 lines
3.8 KiB
Python
100 lines
3.8 KiB
Python
import os
|
|
import glob
|
|
import torch
|
|
import datetime
|
|
import pickle as pickle_tts
|
|
|
|
from TTS.utils.io import RenamingUnpickler
|
|
|
|
|
|
def load_checkpoint(model, checkpoint_path, use_cuda=False, eval=False):
|
|
try:
|
|
state = torch.load(checkpoint_path, map_location=torch.device('cpu'))
|
|
except ModuleNotFoundError:
|
|
pickle_tts.Unpickler = RenamingUnpickler
|
|
state = torch.load(checkpoint_path, map_location=torch.device('cpu'), pickle_module=pickle_tts)
|
|
model.load_state_dict(state['model'])
|
|
if use_cuda:
|
|
model.cuda()
|
|
if eval:
|
|
model.eval()
|
|
return model, state
|
|
|
|
|
|
def save_model(model, optimizer, scheduler, model_disc, optimizer_disc,
|
|
scheduler_disc, current_step, epoch, output_path, **kwargs):
|
|
if hasattr(model, 'module'):
|
|
model_state = model.module.state_dict()
|
|
else:
|
|
model_state = model.state_dict()
|
|
model_disc_state = model_disc.state_dict()\
|
|
if model_disc is not None else None
|
|
optimizer_state = optimizer.state_dict()\
|
|
if optimizer is not None else None
|
|
optimizer_disc_state = optimizer_disc.state_dict()\
|
|
if optimizer_disc is not None else None
|
|
scheduler_state = scheduler.state_dict()\
|
|
if scheduler is not None else None
|
|
scheduler_disc_state = scheduler_disc.state_dict()\
|
|
if scheduler_disc is not None else None
|
|
state = {
|
|
'model': model_state,
|
|
'optimizer': optimizer_state,
|
|
'scheduler': scheduler_state,
|
|
'model_disc': model_disc_state,
|
|
'optimizer_disc': optimizer_disc_state,
|
|
'scheduler_disc': scheduler_disc_state,
|
|
'step': current_step,
|
|
'epoch': epoch,
|
|
'date': datetime.date.today().strftime("%B %d, %Y"),
|
|
}
|
|
state.update(kwargs)
|
|
torch.save(state, output_path)
|
|
|
|
|
|
def save_checkpoint(model, optimizer, scheduler, model_disc, optimizer_disc,
|
|
scheduler_disc, current_step, epoch, output_folder,
|
|
**kwargs):
|
|
file_name = 'checkpoint_{}.pth.tar'.format(current_step)
|
|
checkpoint_path = os.path.join(output_folder, file_name)
|
|
print(" > CHECKPOINT : {}".format(checkpoint_path))
|
|
save_model(model, optimizer, scheduler, model_disc, optimizer_disc,
|
|
scheduler_disc, current_step, epoch, checkpoint_path, **kwargs)
|
|
|
|
|
|
def save_best_model(current_loss, best_loss, model, optimizer, scheduler,
|
|
model_disc, optimizer_disc, scheduler_disc, current_step,
|
|
epoch, out_path, keep_best=False, keep_after=10000,
|
|
**kwargs):
|
|
if current_loss < best_loss:
|
|
best_model_name = f'best_model_{current_step}.pth.tar'
|
|
checkpoint_path = os.path.join(out_path, best_model_name)
|
|
print(" > BEST MODEL : {}".format(checkpoint_path))
|
|
save_model(model,
|
|
optimizer,
|
|
scheduler,
|
|
model_disc,
|
|
optimizer_disc,
|
|
scheduler_disc,
|
|
current_step,
|
|
epoch,
|
|
checkpoint_path,
|
|
model_loss=current_loss,
|
|
**kwargs)
|
|
# only delete previous if current is saved successfully
|
|
if not keep_best or (current_step < keep_after):
|
|
model_names = glob.glob(
|
|
os.path.join(out_path, 'best_model*.pth.tar'))
|
|
for model_name in model_names:
|
|
if os.path.basename(model_name) == best_model_name:
|
|
continue
|
|
os.remove(model_name)
|
|
# create symlink to best model for convinience
|
|
link_name = 'best_model.pth.tar'
|
|
link_path = os.path.join(out_path, link_name)
|
|
if os.path.islink(link_path) or os.path.isfile(link_path):
|
|
os.remove(link_path)
|
|
os.symlink(best_model_name, os.path.join(out_path, link_name))
|
|
best_loss = current_loss
|
|
return best_loss
|