mirror of https://github.com/coqui-ai/TTS.git
181 lines
7.6 KiB
Python
181 lines
7.6 KiB
Python
from dataclasses import asdict, dataclass, field
|
|
from typing import List
|
|
|
|
from coqpit import MISSING, Coqpit, check_argument
|
|
|
|
from TTS.config import BaseAudioConfig, BaseDatasetConfig, BaseTrainingConfig
|
|
|
|
|
|
@dataclass
|
|
class GSTConfig(Coqpit):
|
|
"""Defines the Global Style Token Module
|
|
|
|
Args:
|
|
gst_style_input_wav (str):
|
|
Path to the wav file used to define the style of the output speech at inference. Defaults to None.
|
|
gst_style_input_weights (dict):
|
|
Defines the weights for each style token used at inference. Defaults to None.
|
|
gst_embedding_dim (int):
|
|
Defines the size of the GST embedding vector dimensions. Defaults to 256.
|
|
gst_num_heads (int):
|
|
Number of attention heads used by the multi-head attention. Defaults to 4.
|
|
gst_num_style_tokens (int):
|
|
Number of style token vectors. Defaults to 10.
|
|
"""
|
|
|
|
gst_style_input_wav: str = None
|
|
gst_style_input_weights: dict = None
|
|
gst_embedding_dim: int = 256
|
|
gst_use_speaker_embedding: bool = False
|
|
gst_num_heads: int = 4
|
|
gst_num_style_tokens: int = 10
|
|
|
|
def check_values(
|
|
self,
|
|
):
|
|
"""Check config fields"""
|
|
c = asdict(self)
|
|
super().check_values()
|
|
check_argument("gst_style_input_weights", c, restricted=False)
|
|
check_argument("gst_style_input_wav", c, restricted=False)
|
|
check_argument("gst_embedding_dim", c, restricted=True, min_val=0, max_val=1000)
|
|
check_argument("gst_use_speaker_embedding", c, restricted=False)
|
|
check_argument("gst_num_heads", c, restricted=True, min_val=2, max_val=10)
|
|
check_argument("gst_num_style_tokens", c, restricted=True, min_val=1, max_val=1000)
|
|
|
|
|
|
@dataclass
|
|
class CharactersConfig(Coqpit):
|
|
"""Defines character or phoneme set used by the model
|
|
|
|
Args:
|
|
pad (str):
|
|
characters in place of empty padding. Defaults to None.
|
|
eos (str):
|
|
characters showing the end of a sentence. Defaults to None.
|
|
bos (str):
|
|
characters showing the beginning of a sentence. Defaults to None.
|
|
characters (str):
|
|
character set used by the model. Characters not in this list are ignored when converting input text to
|
|
a list of sequence IDs. Defaults to None.
|
|
punctuations (str):
|
|
characters considered as punctuation as parsing the input sentence. Defaults to None.
|
|
phonemes (str):
|
|
characters considered as parsing phonemes. Defaults to None.
|
|
unique (bool):
|
|
remove any duplicate characters in the character lists. It is a bandaid for compatibility with the old
|
|
models trained with character lists with duplicates.
|
|
"""
|
|
|
|
pad: str = None
|
|
eos: str = None
|
|
bos: str = None
|
|
characters: str = None
|
|
punctuations: str = None
|
|
phonemes: str = None
|
|
unique: bool = True # for backwards compatibility of models trained with char sets with duplicates
|
|
|
|
def check_values(
|
|
self,
|
|
):
|
|
"""Check config fields"""
|
|
c = asdict(self)
|
|
check_argument("pad", c, prerequest="characters", restricted=True)
|
|
check_argument("eos", c, prerequest="characters", restricted=True)
|
|
check_argument("bos", c, prerequest="characters", restricted=True)
|
|
check_argument("characters", c, prerequest="characters", restricted=True)
|
|
check_argument("phonemes", c, restricted=True)
|
|
check_argument("punctuations", c, prerequest="characters", restricted=True)
|
|
|
|
|
|
@dataclass
|
|
class BaseTTSConfig(BaseTrainingConfig):
|
|
"""Shared parameters among all the tts models.
|
|
|
|
Args:
|
|
audio (BaseAudioConfig):
|
|
Audio processor config object instance.
|
|
use_phonemes (bool):
|
|
enable / disable phoneme use.
|
|
use_espeak_phonemes (bool):
|
|
enable / disable eSpeak-compatible phonemes (only if use_phonemes = `True`).
|
|
compute_input_seq_cache (bool):
|
|
enable / disable precomputation of the phoneme sequences. At the expense of some delay at the beginning of
|
|
the training, It allows faster data loader time and precise limitation with `max_seq_len` and
|
|
`min_seq_len`.
|
|
text_cleaner (str):
|
|
Name of the text cleaner used for cleaning and formatting transcripts.
|
|
enable_eos_bos_chars (bool):
|
|
enable / disable the use of eos and bos characters.
|
|
test_senteces_file (str):
|
|
Path to a txt file that has sentences used at test time. The file must have a sentence per line.
|
|
phoneme_cache_path (str):
|
|
Path to the output folder caching the computed phonemes for each sample.
|
|
characters (CharactersConfig):
|
|
Instance of a CharactersConfig class.
|
|
batch_group_size (int):
|
|
Size of the batch groups used for bucketing. By default, the dataloader orders samples by the sequence
|
|
length for a more efficient and stable training. If `batch_group_size > 1` then it performs bucketing to
|
|
prevent using the same batches for each epoch.
|
|
loss_masking (bool):
|
|
enable / disable masking loss values against padded segments of samples in a batch.
|
|
min_seq_len (int):
|
|
Minimum input sequence length to be used at training.
|
|
max_seq_len (int):
|
|
Maximum input sequence length to be used at training. Larger values result in more VRAM usage.
|
|
compute_f0 (int):
|
|
(Not in use yet).
|
|
use_noise_augment (bool):
|
|
Augment the input audio with random noise.
|
|
add_blank (bool):
|
|
Add blank characters between each other two characters. It improves performance for some models at expense
|
|
of slower run-time due to the longer input sequence.
|
|
datasets (List[BaseDatasetConfig]):
|
|
List of datasets used for training. If multiple datasets are provided, they are merged and used together
|
|
for training.
|
|
optimizer (str):
|
|
Optimizer used for the training. Set one from `torch.optim.Optimizer` or `TTS.utils.training`.
|
|
Defaults to ``.
|
|
optimizer_params (dict):
|
|
Optimizer kwargs. Defaults to `{"betas": [0.8, 0.99], "weight_decay": 0.0}`
|
|
lr_scheduler (str):
|
|
Learning rate scheduler for the training. Use one from `torch.optim.Scheduler` schedulers or
|
|
`TTS.utils.training`. Defaults to ``.
|
|
lr_scheduler_params (dict):
|
|
Parameters for the generator learning rate scheduler. Defaults to `{"warmup": 4000}`.
|
|
test_sentences (List[str]):
|
|
List of sentences to be used at testing. Defaults to '[]'
|
|
"""
|
|
|
|
audio: BaseAudioConfig = field(default_factory=BaseAudioConfig)
|
|
# phoneme settings
|
|
use_phonemes: bool = False
|
|
use_espeak_phonemes: bool = True
|
|
phoneme_language: str = None
|
|
compute_input_seq_cache: bool = False
|
|
text_cleaner: str = MISSING
|
|
enable_eos_bos_chars: bool = False
|
|
test_sentences_file: str = ""
|
|
phoneme_cache_path: str = None
|
|
# vocabulary parameters
|
|
characters: CharactersConfig = None
|
|
# training params
|
|
batch_group_size: int = 0
|
|
loss_masking: bool = None
|
|
# dataloading
|
|
min_seq_len: int = 1
|
|
max_seq_len: int = float("inf")
|
|
compute_f0: bool = False
|
|
use_noise_augment: bool = False
|
|
add_blank: bool = False
|
|
# dataset
|
|
datasets: List[BaseDatasetConfig] = field(default_factory=lambda: [BaseDatasetConfig()])
|
|
# optimizer
|
|
optimizer: str = MISSING
|
|
optimizer_params: dict = MISSING
|
|
# scheduler
|
|
lr_scheduler: str = ""
|
|
lr_scheduler_params: dict = field(default_factory=lambda: {})
|
|
# testing
|
|
test_sentences: List[str] = field(default_factory=lambda: [])
|