mirror of https://github.com/coqui-ai/TTS.git
445 lines
18 KiB
Python
445 lines
18 KiB
Python
import math
|
|
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional
|
|
from TTS.tts.utils.generic_utils import sequence_mask
|
|
from TTS.tts.utils.ssim import ssim
|
|
|
|
|
|
# pylint: disable=abstract-method
|
|
# relates https://github.com/pytorch/pytorch/issues/42305
|
|
class L1LossMasked(nn.Module):
|
|
def __init__(self, seq_len_norm):
|
|
super().__init__()
|
|
self.seq_len_norm = seq_len_norm
|
|
|
|
def forward(self, x, target, length):
|
|
"""
|
|
Args:
|
|
x: A Variable containing a FloatTensor of size
|
|
(batch, max_len, dim) which contains the
|
|
unnormalized probability for each class.
|
|
target: A Variable containing a LongTensor of size
|
|
(batch, max_len, dim) which contains the index of the true
|
|
class for each corresponding step.
|
|
length: A Variable containing a LongTensor of size (batch,)
|
|
which contains the length of each data in a batch.
|
|
Shapes:
|
|
x: B x T X D
|
|
target: B x T x D
|
|
length: B
|
|
Returns:
|
|
loss: An average loss value in range [0, 1] masked by the length.
|
|
"""
|
|
# mask: (batch, max_len, 1)
|
|
target.requires_grad = False
|
|
mask = sequence_mask(sequence_length=length,
|
|
max_len=target.size(1)).unsqueeze(2).float()
|
|
if self.seq_len_norm:
|
|
norm_w = mask / mask.sum(dim=1, keepdim=True)
|
|
out_weights = norm_w.div(target.shape[0] * target.shape[2])
|
|
mask = mask.expand_as(x)
|
|
loss = functional.l1_loss(x * mask,
|
|
target * mask,
|
|
reduction='none')
|
|
loss = loss.mul(out_weights.to(loss.device)).sum()
|
|
else:
|
|
mask = mask.expand_as(x)
|
|
loss = functional.l1_loss(x * mask, target * mask, reduction='sum')
|
|
loss = loss / mask.sum()
|
|
return loss
|
|
|
|
|
|
class MSELossMasked(nn.Module):
|
|
def __init__(self, seq_len_norm):
|
|
super(MSELossMasked, self).__init__()
|
|
self.seq_len_norm = seq_len_norm
|
|
|
|
def forward(self, x, target, length):
|
|
"""
|
|
Args:
|
|
x: A Variable containing a FloatTensor of size
|
|
(batch, max_len, dim) which contains the
|
|
unnormalized probability for each class.
|
|
target: A Variable containing a LongTensor of size
|
|
(batch, max_len, dim) which contains the index of the true
|
|
class for each corresponding step.
|
|
length: A Variable containing a LongTensor of size (batch,)
|
|
which contains the length of each data in a batch.
|
|
Shapes:
|
|
x: B x T X D
|
|
target: B x T x D
|
|
length: B
|
|
Returns:
|
|
loss: An average loss value in range [0, 1] masked by the length.
|
|
"""
|
|
# mask: (batch, max_len, 1)
|
|
target.requires_grad = False
|
|
mask = sequence_mask(sequence_length=length,
|
|
max_len=target.size(1)).unsqueeze(2).float()
|
|
if self.seq_len_norm:
|
|
norm_w = mask / mask.sum(dim=1, keepdim=True)
|
|
out_weights = norm_w.div(target.shape[0] * target.shape[2])
|
|
mask = mask.expand_as(x)
|
|
loss = functional.mse_loss(x * mask,
|
|
target * mask,
|
|
reduction='none')
|
|
loss = loss.mul(out_weights.to(loss.device)).sum()
|
|
else:
|
|
mask = mask.expand_as(x)
|
|
loss = functional.mse_loss(x * mask,
|
|
target * mask,
|
|
reduction='sum')
|
|
loss = loss / mask.sum()
|
|
return loss
|
|
|
|
|
|
class SSIMLoss(torch.nn.Module):
|
|
"""SSIM loss as explained here https://en.wikipedia.org/wiki/Structural_similarity"""
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.loss_func = ssim
|
|
|
|
def forward(self, y_hat, y, length=None):
|
|
"""
|
|
Args:
|
|
y_hat (tensor): model prediction values.
|
|
y (tensor): target values.
|
|
length (tensor): length of each sample in a batch.
|
|
Shapes:
|
|
y_hat: B x T X D
|
|
y: B x T x D
|
|
length: B
|
|
Returns:
|
|
loss: An average loss value in range [0, 1] masked by the length.
|
|
"""
|
|
if length is not None:
|
|
m = sequence_mask(sequence_length=length,
|
|
max_len=y.size(1)).unsqueeze(2).float().to(
|
|
y_hat.device)
|
|
y_hat, y = y_hat * m, y * m
|
|
return 1 - self.loss_func(y_hat.unsqueeze(1), y.unsqueeze(1))
|
|
|
|
|
|
class AttentionEntropyLoss(nn.Module):
|
|
# pylint: disable=R0201
|
|
def forward(self, align):
|
|
"""
|
|
Forces attention to be more decisive by penalizing
|
|
soft attention weights
|
|
|
|
TODO: arguments
|
|
TODO: unit_test
|
|
"""
|
|
entropy = torch.distributions.Categorical(probs=align).entropy()
|
|
loss = (entropy / np.log(align.shape[1])).mean()
|
|
return loss
|
|
|
|
|
|
class BCELossMasked(nn.Module):
|
|
def __init__(self, pos_weight):
|
|
super(BCELossMasked, self).__init__()
|
|
self.pos_weight = pos_weight
|
|
|
|
def forward(self, x, target, length):
|
|
"""
|
|
Args:
|
|
x: A Variable containing a FloatTensor of size
|
|
(batch, max_len) which contains the
|
|
unnormalized probability for each class.
|
|
target: A Variable containing a LongTensor of size
|
|
(batch, max_len) which contains the index of the true
|
|
class for each corresponding step.
|
|
length: A Variable containing a LongTensor of size (batch,)
|
|
which contains the length of each data in a batch.
|
|
Shapes:
|
|
x: B x T
|
|
target: B x T
|
|
length: B
|
|
Returns:
|
|
loss: An average loss value in range [0, 1] masked by the length.
|
|
"""
|
|
# mask: (batch, max_len, 1)
|
|
target.requires_grad = False
|
|
if length is not None:
|
|
mask = sequence_mask(sequence_length=length,
|
|
max_len=target.size(1)).float()
|
|
x = x * mask
|
|
target = target * mask
|
|
num_items = mask.sum()
|
|
else:
|
|
num_items = torch.numel(x)
|
|
loss = functional.binary_cross_entropy_with_logits(
|
|
x,
|
|
target,
|
|
pos_weight=self.pos_weight,
|
|
reduction='sum')
|
|
loss = loss / num_items
|
|
return loss
|
|
|
|
|
|
class DifferentailSpectralLoss(nn.Module):
|
|
"""Differential Spectral Loss
|
|
https://arxiv.org/ftp/arxiv/papers/1909/1909.10302.pdf"""
|
|
|
|
def __init__(self, loss_func):
|
|
super().__init__()
|
|
self.loss_func = loss_func
|
|
|
|
def forward(self, x, target, length=None):
|
|
"""
|
|
Shapes:
|
|
x: B x T
|
|
target: B x T
|
|
length: B
|
|
Returns:
|
|
loss: An average loss value in range [0, 1] masked by the length.
|
|
"""
|
|
x_diff = x[:, 1:] - x[:, :-1]
|
|
target_diff = target[:, 1:] - target[:, :-1]
|
|
if length is None:
|
|
return self.loss_func(x_diff, target_diff)
|
|
return self.loss_func(x_diff, target_diff, length-1)
|
|
|
|
|
|
class GuidedAttentionLoss(torch.nn.Module):
|
|
def __init__(self, sigma=0.4):
|
|
super(GuidedAttentionLoss, self).__init__()
|
|
self.sigma = sigma
|
|
|
|
def _make_ga_masks(self, ilens, olens):
|
|
B = len(ilens)
|
|
max_ilen = max(ilens)
|
|
max_olen = max(olens)
|
|
ga_masks = torch.zeros((B, max_olen, max_ilen))
|
|
for idx, (ilen, olen) in enumerate(zip(ilens, olens)):
|
|
ga_masks[idx, :olen, :ilen] = self._make_ga_mask(
|
|
ilen, olen, self.sigma)
|
|
return ga_masks
|
|
|
|
def forward(self, att_ws, ilens, olens):
|
|
ga_masks = self._make_ga_masks(ilens, olens).to(att_ws.device)
|
|
seq_masks = self._make_masks(ilens, olens).to(att_ws.device)
|
|
losses = ga_masks * att_ws
|
|
loss = torch.mean(losses.masked_select(seq_masks))
|
|
return loss
|
|
|
|
@staticmethod
|
|
def _make_ga_mask(ilen, olen, sigma):
|
|
grid_x, grid_y = torch.meshgrid(torch.arange(olen).to(olen), torch.arange(ilen).to(ilen))
|
|
grid_x, grid_y = grid_x.float(), grid_y.float()
|
|
return 1.0 - torch.exp(-(grid_y / ilen - grid_x / olen)**2 /
|
|
(2 * (sigma**2)))
|
|
|
|
@staticmethod
|
|
def _make_masks(ilens, olens):
|
|
in_masks = sequence_mask(ilens)
|
|
out_masks = sequence_mask(olens)
|
|
return out_masks.unsqueeze(-1) & in_masks.unsqueeze(-2)
|
|
|
|
|
|
class Huber(nn.Module):
|
|
# pylint: disable=R0201
|
|
def forward(self, x, y, length=None):
|
|
"""
|
|
Shapes:
|
|
x: B x T
|
|
y: B x T
|
|
length: B
|
|
"""
|
|
mask = sequence_mask(sequence_length=length, max_len=y.size(1)).float()
|
|
return torch.nn.functional.smooth_l1_loss(
|
|
x * mask, y * mask, reduction='sum') / mask.sum()
|
|
|
|
|
|
########################
|
|
# MODEL LOSS LAYERS
|
|
########################
|
|
|
|
class TacotronLoss(torch.nn.Module):
|
|
"""Collection of Tacotron set-up based on provided config."""
|
|
def __init__(self, c, stopnet_pos_weight=10, ga_sigma=0.4):
|
|
super(TacotronLoss, self).__init__()
|
|
self.stopnet_pos_weight = stopnet_pos_weight
|
|
self.ga_alpha = c.ga_alpha
|
|
self.decoder_diff_spec_alpha = c.decoder_diff_spec_alpha
|
|
self.postnet_diff_spec_alpha = c.postnet_diff_spec_alpha
|
|
self.decoder_alpha = c.decoder_loss_alpha
|
|
self.postnet_alpha = c.postnet_loss_alpha
|
|
self.decoder_ssim_alpha = c.decoder_ssim_alpha
|
|
self.postnet_ssim_alpha = c.postnet_ssim_alpha
|
|
self.config = c
|
|
|
|
# postnet and decoder loss
|
|
if c.loss_masking:
|
|
self.criterion = L1LossMasked(c.seq_len_norm) if c.model in [
|
|
"Tacotron"
|
|
] else MSELossMasked(c.seq_len_norm)
|
|
else:
|
|
self.criterion = nn.L1Loss() if c.model in ["Tacotron"
|
|
] else nn.MSELoss()
|
|
# guided attention loss
|
|
if c.ga_alpha > 0:
|
|
self.criterion_ga = GuidedAttentionLoss(sigma=ga_sigma)
|
|
# differential spectral loss
|
|
if c.postnet_diff_spec_alpha > 0 or c.decoder_diff_spec_alpha > 0:
|
|
self.criterion_diff_spec = DifferentailSpectralLoss(loss_func=self.criterion)
|
|
# ssim loss
|
|
if c.postnet_ssim_alpha > 0 or c.decoder_ssim_alpha > 0:
|
|
self.criterion_ssim = SSIMLoss()
|
|
# stopnet loss
|
|
# pylint: disable=not-callable
|
|
self.criterion_st = BCELossMasked(
|
|
pos_weight=torch.tensor(stopnet_pos_weight)) if c.stopnet else None
|
|
|
|
def forward(self, postnet_output, decoder_output, mel_input, linear_input,
|
|
stopnet_output, stopnet_target, output_lens, decoder_b_output,
|
|
alignments, alignment_lens, alignments_backwards, input_lens):
|
|
|
|
|
|
# decoder outputs linear or mel spectrograms for Tacotron and Tacotron2
|
|
# the target should be set acccordingly
|
|
postnet_target = linear_input if self.config.model.lower() in ["tacotron"] else mel_input
|
|
|
|
return_dict = {}
|
|
# remove lengths if no masking is applied
|
|
if not self.config.loss_masking:
|
|
output_lens = None
|
|
# decoder and postnet losses
|
|
if self.config.loss_masking:
|
|
if self.decoder_alpha > 0:
|
|
decoder_loss = self.criterion(decoder_output, mel_input,
|
|
output_lens)
|
|
if self.postnet_alpha > 0:
|
|
postnet_loss = self.criterion(postnet_output, postnet_target,
|
|
output_lens)
|
|
else:
|
|
if self.decoder_alpha > 0:
|
|
decoder_loss = self.criterion(decoder_output, mel_input)
|
|
if self.postnet_alpha > 0:
|
|
postnet_loss = self.criterion(postnet_output, postnet_target)
|
|
loss = self.decoder_alpha * decoder_loss + self.postnet_alpha * postnet_loss
|
|
return_dict['decoder_loss'] = decoder_loss
|
|
return_dict['postnet_loss'] = postnet_loss
|
|
|
|
# stopnet loss
|
|
stop_loss = self.criterion_st(
|
|
stopnet_output, stopnet_target,
|
|
output_lens) if self.config.stopnet else torch.zeros(1)
|
|
if not self.config.separate_stopnet and self.config.stopnet:
|
|
loss += stop_loss
|
|
return_dict['stopnet_loss'] = stop_loss
|
|
|
|
# backward decoder loss (if enabled)
|
|
if self.config.bidirectional_decoder:
|
|
if self.config.loss_masking:
|
|
decoder_b_loss = self.criterion(
|
|
torch.flip(decoder_b_output, dims=(1, )), mel_input,
|
|
output_lens)
|
|
else:
|
|
decoder_b_loss = self.criterion(torch.flip(decoder_b_output, dims=(1, )), mel_input)
|
|
decoder_c_loss = torch.nn.functional.l1_loss(torch.flip(decoder_b_output, dims=(1, )), decoder_output)
|
|
loss += self.decoder_alpha * (decoder_b_loss + decoder_c_loss)
|
|
return_dict['decoder_b_loss'] = decoder_b_loss
|
|
return_dict['decoder_c_loss'] = decoder_c_loss
|
|
|
|
# double decoder consistency loss (if enabled)
|
|
if self.config.double_decoder_consistency:
|
|
if self.config.loss_masking:
|
|
decoder_b_loss = self.criterion(decoder_b_output, mel_input,
|
|
output_lens)
|
|
else:
|
|
decoder_b_loss = self.criterion(decoder_b_output, mel_input)
|
|
# decoder_c_loss = torch.nn.functional.l1_loss(decoder_b_output, decoder_output)
|
|
attention_c_loss = torch.nn.functional.l1_loss(alignments, alignments_backwards)
|
|
loss += self.decoder_alpha * (decoder_b_loss + attention_c_loss)
|
|
return_dict['decoder_coarse_loss'] = decoder_b_loss
|
|
return_dict['decoder_ddc_loss'] = attention_c_loss
|
|
|
|
# guided attention loss (if enabled)
|
|
if self.config.ga_alpha > 0:
|
|
ga_loss = self.criterion_ga(alignments, input_lens, alignment_lens)
|
|
loss += ga_loss * self.ga_alpha
|
|
return_dict['ga_loss'] = ga_loss
|
|
|
|
# decoder differential spectral loss
|
|
if self.config.decoder_diff_spec_alpha > 0:
|
|
decoder_diff_spec_loss = self.criterion_diff_spec(decoder_output, mel_input, output_lens)
|
|
loss += decoder_diff_spec_loss * self.decoder_diff_spec_alpha
|
|
return_dict['decoder_diff_spec_loss'] = decoder_diff_spec_loss
|
|
|
|
# postnet differential spectral loss
|
|
if self.config.postnet_diff_spec_alpha > 0:
|
|
postnet_diff_spec_loss = self.criterion_diff_spec(postnet_output, postnet_target, output_lens)
|
|
loss += postnet_diff_spec_loss * self.postnet_diff_spec_alpha
|
|
return_dict['postnet_diff_spec_loss'] = postnet_diff_spec_loss
|
|
|
|
# decoder ssim loss
|
|
if self.config.decoder_ssim_alpha > 0:
|
|
decoder_ssim_loss = self.criterion_ssim(decoder_output, mel_input, output_lens)
|
|
loss += decoder_ssim_loss * self.postnet_ssim_alpha
|
|
return_dict['decoder_ssim_loss'] = decoder_ssim_loss
|
|
|
|
# postnet ssim loss
|
|
if self.config.postnet_ssim_alpha > 0:
|
|
postnet_ssim_loss = self.criterion_ssim(postnet_output, postnet_target, output_lens)
|
|
loss += postnet_ssim_loss * self.postnet_ssim_alpha
|
|
return_dict['postnet_ssim_loss'] = postnet_ssim_loss
|
|
|
|
return_dict['loss'] = loss
|
|
|
|
# check if any loss is NaN
|
|
for key, loss in return_dict.items():
|
|
if torch.isnan(loss):
|
|
raise RuntimeError(f" [!] NaN loss with {key}.")
|
|
return return_dict
|
|
|
|
|
|
class GlowTTSLoss(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.constant_factor = 0.5 * math.log(2 * math.pi)
|
|
|
|
def forward(self, z, means, scales, log_det, y_lengths, o_dur_log,
|
|
o_attn_dur, x_lengths):
|
|
return_dict = {}
|
|
# flow loss - neg log likelihood
|
|
pz = torch.sum(scales) + 0.5 * torch.sum(
|
|
torch.exp(-2 * scales) * (z - means)**2)
|
|
log_mle = self.constant_factor + (pz - torch.sum(log_det)) / (
|
|
torch.sum(y_lengths) * z.shape[1])
|
|
# duration loss - MSE
|
|
# loss_dur = torch.sum((o_dur_log - o_attn_dur)**2) / torch.sum(x_lengths)
|
|
# duration loss - huber loss
|
|
loss_dur = torch.nn.functional.smooth_l1_loss(
|
|
o_dur_log, o_attn_dur, reduction='sum') / torch.sum(x_lengths)
|
|
return_dict['loss'] = log_mle + loss_dur
|
|
return_dict['log_mle'] = log_mle
|
|
return_dict['loss_dur'] = loss_dur
|
|
|
|
# check if any loss is NaN
|
|
for key, loss in return_dict.items():
|
|
if torch.isnan(loss):
|
|
raise RuntimeError(f" [!] NaN loss with {key}.")
|
|
return return_dict
|
|
|
|
|
|
class SpeedySpeechLoss(nn.Module):
|
|
def __init__(self, c):
|
|
super().__init__()
|
|
self.l1 = L1LossMasked(False)
|
|
self.ssim = SSIMLoss()
|
|
self.huber = Huber()
|
|
|
|
self.ssim_alpha = c.ssim_alpha
|
|
self.huber_alpha = c.huber_alpha
|
|
self.l1_alpha = c.l1_alpha
|
|
|
|
def forward(self, decoder_output, decoder_target, decoder_output_lens, dur_output, dur_target, input_lens):
|
|
l1_loss = self.l1(decoder_output, decoder_target, decoder_output_lens)
|
|
ssim_loss = self.ssim(decoder_output, decoder_target, decoder_output_lens)
|
|
huber_loss = self.huber(dur_output, dur_target, input_lens)
|
|
loss = l1_loss + ssim_loss + huber_loss
|
|
return {'loss': loss, 'loss_l1': l1_loss, 'loss_ssim': ssim_loss, 'loss_dur': huber_loss}
|