mirror of https://github.com/coqui-ai/TTS.git
371 lines
14 KiB
Python
371 lines
14 KiB
Python
import os
|
|
from glob import glob
|
|
import re
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
from tqdm import tqdm
|
|
|
|
from TTS.tts.utils.generic_utils import split_dataset
|
|
|
|
####################
|
|
# UTILITIES
|
|
####################
|
|
|
|
def load_meta_data(datasets, eval_split=True):
|
|
meta_data_train_all = []
|
|
meta_data_eval_all = [] if eval_split else None
|
|
for dataset in datasets:
|
|
name = dataset['name']
|
|
root_path = dataset['path']
|
|
meta_file_train = dataset['meta_file_train']
|
|
meta_file_val = dataset['meta_file_val']
|
|
# setup the right data processor
|
|
preprocessor = get_preprocessor_by_name(name)
|
|
# load train set
|
|
meta_data_train = preprocessor(root_path, meta_file_train)
|
|
print(f" | > Found {len(meta_data_train)} files in {Path(root_path).resolve()}")
|
|
# load evaluation split if set
|
|
if eval_split:
|
|
if meta_file_val is None:
|
|
meta_data_eval, meta_data_train = split_dataset(meta_data_train)
|
|
else:
|
|
meta_data_eval = preprocessor(root_path, meta_file_val)
|
|
meta_data_eval_all += meta_data_eval
|
|
meta_data_train_all += meta_data_train
|
|
# load attention masks for duration predictor training
|
|
if 'meta_file_attn_mask' in dataset:
|
|
meta_data = dict(load_attention_mask_meta_data(dataset['meta_file_attn_mask']))
|
|
for idx, ins in enumerate(meta_data_train_all):
|
|
attn_file = meta_data[ins[1]].strip()
|
|
meta_data_train_all[idx].append(attn_file)
|
|
if meta_data_eval_all is not None:
|
|
for idx, ins in enumerate(meta_data_eval_all):
|
|
attn_file = meta_data[ins[1]].strip()
|
|
meta_data_eval_all[idx].append(attn_file)
|
|
return meta_data_train_all, meta_data_eval_all
|
|
|
|
|
|
def load_attention_mask_meta_data(metafile_path):
|
|
"""Load meta data file created by compute_attention_masks.py"""
|
|
with open(metafile_path, 'r') as f:
|
|
lines = f.readlines()
|
|
|
|
meta_data = []
|
|
for line in lines:
|
|
wav_file, attn_file = line.split('|')
|
|
meta_data.append([wav_file, attn_file])
|
|
return meta_data
|
|
|
|
|
|
def get_preprocessor_by_name(name):
|
|
"""Returns the respective preprocessing function."""
|
|
thismodule = sys.modules[__name__]
|
|
return getattr(thismodule, name.lower())
|
|
|
|
|
|
########################
|
|
# DATASETS
|
|
########################
|
|
|
|
def tweb(root_path, meta_file):
|
|
"""Normalize TWEB dataset.
|
|
https://www.kaggle.com/bryanpark/the-world-english-bible-speech-dataset
|
|
"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "tweb"
|
|
with open(txt_file, 'r') as ttf:
|
|
for line in ttf:
|
|
cols = line.split('\t')
|
|
wav_file = os.path.join(root_path, cols[0] + '.wav')
|
|
text = cols[1]
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def mozilla(root_path, meta_file):
|
|
"""Normalizes Mozilla meta data files to TTS format"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "mozilla"
|
|
with open(txt_file, 'r') as ttf:
|
|
for line in ttf:
|
|
cols = line.split('|')
|
|
wav_file = cols[1].strip()
|
|
text = cols[0].strip()
|
|
wav_file = os.path.join(root_path, "wavs", wav_file)
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def mozilla_de(root_path, meta_file):
|
|
"""Normalizes Mozilla meta data files to TTS format"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "mozilla"
|
|
with open(txt_file, 'r', encoding="ISO 8859-1") as ttf:
|
|
for line in ttf:
|
|
cols = line.strip().split('|')
|
|
wav_file = cols[0].strip()
|
|
text = cols[1].strip()
|
|
folder_name = f"BATCH_{wav_file.split('_')[0]}_FINAL"
|
|
wav_file = os.path.join(root_path, folder_name, wav_file)
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def mailabs(root_path, meta_files=None):
|
|
"""Normalizes M-AI-Labs meta data files to TTS format"""
|
|
speaker_regex = re.compile(
|
|
"by_book/(male|female)/(?P<speaker_name>[^/]+)/")
|
|
if meta_files is None:
|
|
csv_files = glob(root_path + "/**/metadata.csv", recursive=True)
|
|
else:
|
|
csv_files = meta_files
|
|
# meta_files = [f.strip() for f in meta_files.split(",")]
|
|
items = []
|
|
for csv_file in csv_files:
|
|
txt_file = os.path.join(root_path, csv_file)
|
|
folder = os.path.dirname(txt_file)
|
|
# determine speaker based on folder structure...
|
|
speaker_name_match = speaker_regex.search(txt_file)
|
|
if speaker_name_match is None:
|
|
continue
|
|
speaker_name = speaker_name_match.group("speaker_name")
|
|
print(" | > {}".format(csv_file))
|
|
with open(txt_file, 'r') as ttf:
|
|
for line in ttf:
|
|
cols = line.split('|')
|
|
if meta_files is None:
|
|
wav_file = os.path.join(folder, 'wavs', cols[0] + '.wav')
|
|
else:
|
|
wav_file = os.path.join(root_path,
|
|
folder.replace("metadata.csv", ""),
|
|
'wavs', cols[0] + '.wav')
|
|
if os.path.isfile(wav_file):
|
|
text = cols[1].strip()
|
|
items.append([text, wav_file, speaker_name])
|
|
else:
|
|
raise RuntimeError("> File %s does not exist!" %
|
|
(wav_file))
|
|
return items
|
|
|
|
|
|
def ljspeech(root_path, meta_file):
|
|
"""Normalizes the Nancy meta data file to TTS format"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "ljspeech"
|
|
with open(txt_file, 'r') as ttf:
|
|
for line in ttf:
|
|
cols = line.split('|')
|
|
wav_file = os.path.join(root_path, 'wavs', cols[0] + '.wav')
|
|
text = cols[1]
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def css10(root_path, meta_file):
|
|
"""Normalizes the CSS10 dataset file to TTS format"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "ljspeech"
|
|
with open(txt_file, 'r') as ttf:
|
|
for line in ttf:
|
|
cols = line.split('|')
|
|
wav_file = os.path.join(root_path, cols[0])
|
|
text = cols[1]
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def nancy(root_path, meta_file):
|
|
"""Normalizes the Nancy meta data file to TTS format"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "nancy"
|
|
with open(txt_file, 'r') as ttf:
|
|
for line in ttf:
|
|
utt_id = line.split()[1]
|
|
text = line[line.find('"') + 1:line.rfind('"') - 1]
|
|
wav_file = os.path.join(root_path, "wavn", utt_id + ".wav")
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def common_voice(root_path, meta_file):
|
|
"""Normalize the common voice meta data file to TTS format."""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
with open(txt_file, 'r') as ttf:
|
|
for line in ttf:
|
|
if line.startswith("client_id"):
|
|
continue
|
|
cols = line.split("\t")
|
|
text = cols[2]
|
|
speaker_name = cols[0]
|
|
wav_file = os.path.join(root_path, "clips", cols[1].replace(".mp3", ".wav"))
|
|
items.append([text, wav_file, 'MCV_' + speaker_name])
|
|
return items
|
|
|
|
|
|
def libri_tts(root_path, meta_files=None):
|
|
"""https://ai.google/tools/datasets/libri-tts/"""
|
|
items = []
|
|
if meta_files is None:
|
|
meta_files = glob(f"{root_path}/**/*trans.tsv", recursive=True)
|
|
for meta_file in meta_files:
|
|
_meta_file = os.path.basename(meta_file).split('.')[0]
|
|
speaker_name = _meta_file.split('_')[0]
|
|
chapter_id = _meta_file.split('_')[1]
|
|
_root_path = os.path.join(root_path, f"{speaker_name}/{chapter_id}")
|
|
with open(meta_file, 'r') as ttf:
|
|
for line in ttf:
|
|
cols = line.split('\t')
|
|
wav_file = os.path.join(_root_path, cols[0] + '.wav')
|
|
text = cols[1]
|
|
items.append([text, wav_file, 'LTTS_' + speaker_name])
|
|
for item in items:
|
|
assert os.path.exists(
|
|
item[1]), f" [!] wav files don't exist - {item[1]}"
|
|
return items
|
|
|
|
|
|
def custom_turkish(root_path, meta_file):
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "turkish-female"
|
|
skipped_files = []
|
|
with open(txt_file, 'r', encoding='utf-8') as ttf:
|
|
for line in ttf:
|
|
cols = line.split('|')
|
|
wav_file = os.path.join(root_path, 'wavs',
|
|
cols[0].strip() + '.wav')
|
|
if not os.path.exists(wav_file):
|
|
skipped_files.append(wav_file)
|
|
continue
|
|
text = cols[1].strip()
|
|
items.append([text, wav_file, speaker_name])
|
|
print(f" [!] {len(skipped_files)} files skipped. They don't exist...")
|
|
return items
|
|
|
|
|
|
# ToDo: add the dataset link when the dataset is released publicly
|
|
def brspeech(root_path, meta_file):
|
|
'''BRSpeech 3.0 beta'''
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
with open(txt_file, 'r') as ttf:
|
|
for line in ttf:
|
|
if line.startswith("wav_filename"):
|
|
continue
|
|
cols = line.split('|')
|
|
wav_file = os.path.join(root_path, cols[0])
|
|
text = cols[2]
|
|
speaker_name = cols[3]
|
|
items.append([text, wav_file, speaker_name])
|
|
return items
|
|
|
|
|
|
def vctk(root_path, meta_files=None, wavs_path='wav48'):
|
|
"""homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz"""
|
|
test_speakers = meta_files
|
|
items = []
|
|
meta_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True)
|
|
for meta_file in meta_files:
|
|
_, speaker_id, txt_file = os.path.relpath(meta_file,
|
|
root_path).split(os.sep)
|
|
file_id = txt_file.split('.')[0]
|
|
if isinstance(test_speakers,
|
|
list): # if is list ignore this speakers ids
|
|
if speaker_id in test_speakers:
|
|
continue
|
|
with open(meta_file) as file_text:
|
|
text = file_text.readlines()[0]
|
|
wav_file = os.path.join(root_path, wavs_path, speaker_id,
|
|
file_id + '.wav')
|
|
items.append([text, wav_file, 'VCTK_' + speaker_id])
|
|
|
|
return items
|
|
|
|
|
|
def vctk_slim(root_path, meta_files=None, wavs_path='wav48'):
|
|
"""homepages.inf.ed.ac.uk/jyamagis/release/VCTK-Corpus.tar.gz"""
|
|
items = []
|
|
txt_files = glob(f"{os.path.join(root_path,'txt')}/**/*.txt", recursive=True)
|
|
for text_file in txt_files:
|
|
_, speaker_id, txt_file = os.path.relpath(text_file,
|
|
root_path).split(os.sep)
|
|
file_id = txt_file.split('.')[0]
|
|
if isinstance(meta_files, list): # if is list ignore this speakers ids
|
|
if speaker_id in meta_files:
|
|
continue
|
|
wav_file = os.path.join(root_path, wavs_path, speaker_id,
|
|
file_id + '.wav')
|
|
items.append([None, wav_file, 'VCTK_' + speaker_id])
|
|
|
|
return items
|
|
|
|
# ======================================== VOX CELEB ===========================================
|
|
def voxceleb2(root_path, meta_file=None):
|
|
"""
|
|
:param meta_file Used only for consistency with load_meta_data api
|
|
"""
|
|
return _voxcel_x(root_path, meta_file, voxcel_idx="2")
|
|
|
|
|
|
def voxceleb1(root_path, meta_file=None):
|
|
"""
|
|
:param meta_file Used only for consistency with load_meta_data api
|
|
"""
|
|
return _voxcel_x(root_path, meta_file, voxcel_idx="1")
|
|
|
|
|
|
def _voxcel_x(root_path, meta_file, voxcel_idx):
|
|
assert voxcel_idx in ["1", "2"]
|
|
expected_count = 148_000 if voxcel_idx == "1" else 1_000_000
|
|
voxceleb_path = Path(root_path)
|
|
cache_to = voxceleb_path / f"metafile_voxceleb{voxcel_idx}.csv"
|
|
cache_to.parent.mkdir(exist_ok=True)
|
|
|
|
# if not exists meta file, crawl recursively for 'wav' files
|
|
if meta_file is not None:
|
|
with open(str(meta_file), 'r') as f:
|
|
return [x.strip().split('|') for x in f.readlines()]
|
|
|
|
elif not cache_to.exists():
|
|
cnt = 0
|
|
meta_data = []
|
|
wav_files = voxceleb_path.rglob("**/*.wav")
|
|
for path in tqdm(wav_files, desc=f"Building VoxCeleb {voxcel_idx} Meta file ... this needs to be done only once.",
|
|
total=expected_count):
|
|
speaker_id = str(Path(path).parent.parent.stem)
|
|
assert speaker_id.startswith('id')
|
|
text = None # VoxCel does not provide transciptions, and they are not needed for training the SE
|
|
meta_data.append(f"{text}|{path}|voxcel{voxcel_idx}_{speaker_id}\n")
|
|
cnt += 1
|
|
with open(str(cache_to), 'w') as f:
|
|
f.write("".join(meta_data))
|
|
if cnt < expected_count:
|
|
raise ValueError(f"Found too few instances for Voxceleb. Should be around {expected_count}, is: {cnt}")
|
|
|
|
with open(str(cache_to), 'r') as f:
|
|
return [x.strip().split('|') for x in f.readlines()]
|
|
|
|
|
|
|
|
|
|
# ======================================== Baker (chinese mandarin single speaker) ===========================================
|
|
def baker(root_path, meta_file):
|
|
"""Normalizes the Baker meta data file to TTS format"""
|
|
txt_file = os.path.join(root_path, meta_file)
|
|
items = []
|
|
speaker_name = "baker"
|
|
with open(txt_file, 'r') as ttf:
|
|
for line in ttf:
|
|
wav_name, text = line.rstrip('\n').split("|")
|
|
wav_path = os.path.join(root_path, "clips_22", wav_name)
|
|
items.append([text, wav_path, speaker_name])
|
|
return items
|